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Summary 
This thesis investigates applications of active control for loudspeakers.  Active control is considered in 
this thesis as a tool to simplify the design or increase the performance of an audio reproduction 
system.    This view has been made possible by recent reductions in the cost of hardware for digital 
signal processing.  This thesis presents simple processing techniques for active control of 
loudspeakers, and shows how they can be used to increase the net sensitivity of electroacoustic 
systems.  
 
Authors and inventors have previously promoted active control primarily as a means to improve the 
quality of an existing loudspeaker.  A somewhat different view is taken in this thesis.  Specifically, it 
is considered how introducing active control permits an audio reproduction system to more efficiently 
or more simply achieve its specified design target. 
 
Practical considerations require active control to be implemented by digital processing.  It is assumed 
in this thesis that, for active control to reduce cost, its processing algorithms should be no more 
complicated than common audio DSP algorithms already in use in a wide array of products.  It is 
shown in this thesis that suitably simple algorithms for active control are made possible by using 
discrete-time models of loudspeaker dynamics. Additionally, the digital filters describing the 
loudspeaker dynamics are kept to the same order as common continuous-time models of loudspeaker 
dynamics.  This achieves simplifications over previously published techniques for digital loudspeaker 
processing, which have modelled loudspeaker dynamics by numerical integration of continuous-time 
models, or by high-order non-recursive filters.  
 
It is concluded after a review of literature that adaptive feedforward control is the most practical 
architecture for active control of loudspeakers.  Its key advantages are its ability to tune itself to 
changes in a loudspeaker, and to do this without the need for a direct feedback signal, which is 
generally expensive and impractical to obtain.  A simple feedforward nonlinear controller is developed 
by applying the theory of feedback linearisation to the discrete-time loudspeaker model developed.   
 
Simple adaptive algorithms, using the discrete-time loudspeaker model mentioned above, are 
presented.  These algorithms are used to determine parametric changes in a loudspeaker, known to 
occur due to thermal fluctuations, ageing, and other factors.  The convergence properties of the 
adaptive algorithms are assessed with signals measured on actual loudspeakers.  
 
Two applications of active control are presented.  Linear active control, or equalisation as per classical 
loudspeaker theory, is discussed for a simple loudspeaker.  The benefit of making such equalisation 
adaptive, and a simple manner in which this can be done with digital processing, is presented.  A 
second, nonlinear application of active control is also considered.  It is found that nonlinear active 
control permits a reduction in the height of a loudspeaker’s voice-coil.   A loudspeaker’s sensitivity is 
inversely proportional to its moving mass, and as this moving mass is dominated by the voice coil in 
some loudspeakers, reduction of its height permits significant increase in sensitivity.  Active control 
permits compensation of the nonlinear distortion created by the increase in transduction coefficient 
nonuniformity caused by this shortening of the voice coil height.  Furthermore, it is shown that the 
sensitivity increase provided by shortening the voice-coil height is significantly greater than the 
additional amplifier output required for compensating the resulting increase in nonlinear distortion. 
Measurements of the nonlinear compensation performance with actual loudspeakers are presented. 
 
Conclusions on optimal design of loudspeakers for use with active control are drawn, and suggestions 
for further research are given. 
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Resumé 
Denne afhandling undersøger aktiv kontrol af højttalere. Aktiv kontrol betragtes som et værktøj der 
kan forenkle højttalerkonstruktioner eller forbedre højttaleres egenskaber i lydgengivelsessystemer. 
Dette er muliggjort af de senere års faldende priser på digitale signalbehandlingssystemer. 
Afhandlingen præsenterer forskellige forholdsvis enkle metoder til aktiv kontrol af højttalere, og viser 
hvordan de kan bruges til at forøge elektroakustiske systemers følsomhed. 
 
Forskere og opfindere har hidtil primært interesseret sig for aktive metoder som et middel til forbedre 
eksisterende højttalertyper egenskaber. Denne afhandling har et lidt andet sigte. Det undersøges 
hvordan en højttalerkonstruktion kan modificeres således at der opnås en forbedring af egenskaberne 
ved hjælp af et aktivt system. 
 
Aktive kontrolsystemer kan kun realiseres økonomisk ved hjælp af digital signalbehandling. Hvis 
aktive metoder skal reducere omkostningerne må det forudsættes at algoritmerne er så enkle som 
muligt - og ikke mere komplicerede end de algoritmer til audioformål som allerede anvendes i en lang 
række produkter. Det vises at rimeligt enkle signalbehandlingsalgoritmer kan udvikles ved hjælp af 
tids-diskrete højttalermodeller. De digitale filtre som beskriver højttalernes dynamiske egenskaber er 
begrænset til samme orden som almindelige tids-kontinuerte højttalermodeller. Herved er der opnået 
en forenkling sammenlignet med  metoder til kontrol af højttalere beskrevet i litteraturen, idet disse 
metoder i almindelighed har modelleret højttalernes egenskaber ved hjælp af numerisk integration af 
tids-kontinuerte modeller eller med ikke-rekursive filtre af høj orden. 
 
Efter en gennemgang af litteraturen konkluderes det at adaptiv feedforward-kontrol vil være særlig 
hensigtsmæssig i forbindelse med aktiv styring af højttalere. Dette hænger sammen med denne 
metodes evne til at justere sig ind efter de ændringer der kan forekomme i en højttaler uden brug af et 
direkte feedback-signal, som i almindelighed er dyrt og vanskeligt at opnå. Et ret enkelt, ikke-lineært 
feedforward-kontrolsystem er udviklet ved at anvende teorien for feedback-linearisering på den tids-
diskrete højttalermodel. 
 
En række adaptive algoritmer, baseret på den tids-diskrete højttalermodel, præsenteres. Disse 
algoritmer bruges til at bestemme de parametriske ændringer i en højttaler som vides at forekomme, 
bl.a. på grund af termiske fluktuationer og ældningsprocesser. Konvergensegenskaberne er bestemt 
med signaler som er målt på forskellige virkelige højttalere. 
 
Afhandlingen undersøger to anvendelser af aktiv kontrol. Lineær aktiv styring af en højttaler 
(equalisation) diskuteres. Fordelen ved adaptiv equalisation demonstreres. Ikke-lineær adaptiv styring 
bliver også undersøgt, og det konkluderes at en sådan styring gør det muligt at reducere svingspolens 
længde. Da højttaleres følsomhed er omvendt proportional med massen af det svingende system, som 
domineres af svingspolens masse, følger det at man kan opnå en forøgelse af højttalerens følsomhed. 
Dette resulterer imidlertid i øget ikke-lineær forvrængning. Det vises i afhandlingen at denne 
forvrængning kan udkompenseres med aktiv kontrol. Endvidere viser det sig at forøgelsen af 
følsomheden er større end det ekstra forstærker-output som kræves til signalbehandlingen. 
Signalbehandlingssystemets gunstige virkning dokumenteres med målinger på virkelige højttalere. 
  
Afslutningsvis præsenteres konklusioner vedrørende optimal design af højttalere med aktive 
kontrolsystemer, ligesom der gives en række forslag til yderligere forskning. 
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Conventions, notation, and abbreviations 

Conventions  
x(t) A real-valued function of continuous-time 
x(s) The Laplace transform of x(t)  
X(s) A complex-valued transfer function 
x[n] A real-valued function of discrete-time 
x A vector 

 Nℜ∈x  A real-valued vector with N elements 
X A matrix 

)(tx&  The derivative of x(t) with respect to time. 
)(tx&&  The second derivative of x(t) with respect to time. 

)()( tx n  The nth derivative of x(t) with respect to time. 
)(ˆ tx  An estimate of x(t) 

 
 
 
The Laplace transform of time-dependent quantities is used in this thesis, as given by  

∫
∞

−=
0

)()( dtetxsx st  

The resulting Laplace transform x(s) is occasionally used in this thesis in the same equation as single-
frequency (harmonic) exponential notation. In this case, we consider the Laplace transform evaluated 
at a single frequency.  Note that if only a single frequency is considered, the time domain 
representation may be recovered using the complex exponential as follows:  

{ } fis
ftiesxtx π−=

π−= 2
2)(Re)(   

This is equivalent to stating s = –iω.  Readers accustomed to the convention s = jω may consider:  
i = – j.  
 
 
The following sign notation is used for discrete-time difference equations, and their use in discussing 
digital filters along with their z-transform: 

∑

∑

=

−

=

−

+
=⇒

−−−−−−++−+=

N

n

n
n

M

n

n
n

NM

za

zb
zH

NnyanyaMnxbnxbnxbny

1

0

110

1
)(

][...]1[][...]1[][][

 

where y[n] is the output, x[n] is the input, bk are the feedforward coefficients, and ak are the feedback 
coefficients.  This is in contrast to some presentations wherein ak are the feedforward coefficients, and 
bk are the feedback coefficients.  Also, in some presentations, the ak (feedback) coefficients have the 
opposite sign. 
 
 



16   
 

 

Notation 
In the case of overloaded (multiple use) symbols, definitions of their different uses are separated by a 
semicolon (;), and are listed in the order in which they appear in the text. 
 
Some notation used in Appendices C and D is not listed here.  All notation appearing in those 
appendices and not listed here is defined explicitly in those appendices. 
 
a vector of feedback coefficients of a digital filter 
ak kth

 feedback coefficient of a difference equation, or digital filter 
Ae(s) electrical admittance (multiplicative inverse of the electrical impedance) 
An nth

 numerator coefficient of a partial-fraction-expansion 
b vector of feedforward coefficients of a digital filter 
bk kth feedforward coefficient of a difference equation, or digital filter  
B, B(x) magnetic flux density (average) in the coil gap created by the magnet in a 

loudspeaker, as a function of axial distance along the coil gap 
c vector of feedback coefficients of a differential equation 
c0 speed of sound in air under adiabatic conditions (approx. 343 m/s at 20 °C) 
cd mechanical damping of the loudspeaker diaphragm 
cn nth

   feedback coefficient of generalised differential equation 
cp effective resistance upon the fluid flow in a port 
ct total mechanical damping of a loudspeaker diaphragm 
Cdisp·n specified displacement 
dn nth feedforward coefficient of a generalised differential equation 

][nd kw  gradient of the error surface ξ(w) along the parameter wk 

][ˆ
0 ndφ  estimate of the gradient of the error surface along the parameter φ0 

d vector of feedforward coefficients of a differential equation; vector of gradient 
values of the error surface ξ(w) with respect to its weighting parameter vector w 

e transcendental number ∑∞

== 0
!1

n
n  

f frequency 
f(s) force, in frequency (Laplace) domain, generic 
fc(t), fc(s), fc[n] mechanical force on the diaphragm, in time (continuous), frequency, and discrete-

time 
fc·p[n] force on the voice-coil, predicted from the force equation 
f0 the vacuum (acoustically unloaded), open-circuit resonance frequency 
fs free-air resonance frequency of a loudspeaker 
f(x(t)) feedback (system) vector field of a system represented in state-space form 
Fma force due to magnetic attraction (solenoid effect), caused by nonuniform  blocked 

electrical inductance 
Fs sampling rate (frequency) of a discrete-time system  ( = 1/ Ts)  
g(x(t)) input vector field of a system represented in state-space form 
h(t), h[n] impulse response, generic 

][nhdt  impulse response of a discrete-time approximation to an differentiator 
)(th

eA  impulse response of the electrical admittance 
][nh dt∫  impulse response of a discrete-time approximation to an integrator 

( ))(txh  output vector field of a system expressed in state-space form 
H(s)  transfer function, generic, in continuous-time (Laplace domain) 
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)(zH
mX  mechanical mobility, in z-domain (discrete-time) 

i  imaginary number, 1−=  
i(t), i(s) current, generic 
ic(t), ic(s), ic[n] electrical current through the voice-coil in time (continuous), frequency, and 

discrete-time 
ic·m[n] measured electrical current 
ic·p[n] predicted electrical current 
k integer, generic 
k1(x) deviation from the small-signal stiffness as a function of displacement 
ka stiffness due to acoustic loading on the diaphragm of a loudspeaker 
kd , kd(x) effective stiffness of the diaphragm’s suspension; as a function of displacement 
kt total mechanical stiffness of a loudspeaker diaphragm 
l effective length of the voice-coil; integer, generic 
leff effective length of the voice-coil  
Leb blocked electrical inductance (the effective inductance of the voice-coil when the 

voice-coil sees an infinite mechanical impedance) 
( ))(L )( tn xhf  nth-order Lie derivative of the vector field h(x(t)) along the vector field f(x(t)) 

ma effective mass of acoustic loading on a loudspeaker diaphragm 
md effective moving mass of a loudspeaker diaphragm 
mt total moving mass of a loudspeaker diaphragm 
mp effective mass of fluid in a port, of a vented (ported) loudspeaker enclosure 
n integer, generic 
Nφ order of polynomial fit to the transduction coefficient 
Nk order of polynomial fit to the suspension stiffness 
p(t), p(s) acoustic pressure, generic 
p1m(s) acoustic pressure at one (1) meter from a compact acoustic source 
pb(s) pressure at back of diaphragm 
pc(t) cavity acoustic pressure 
pf (s) pressure at front of diaphragm 
pr(s) far-field acoustic pressure 

 nu
p ·σ   nth

 coefficient of a polynomial approximation of the determination of σu in terms of 
a2 (§2.3.3) 

p new-signal-input-signal cross-correlation vector 
P matrix for continuous-to-discrete-time feedback coefficient conversion according 

to the bilinear transform 
Q ‘quality-factor’ of a system’s resonance (= ckm ) 
Qes electrical Q of a loudspeaker 
Qms mechanical Q of a loudspeaker 
Qtc total Q of a loudspeaker mounted in a closed box 
Q matrix for continuous-to-discrete-time feedforward coefficient conversion 

according to the bilinear transform 
r distance from acoustic source to acoustic receiver 
rd effective radius of the loudspeaker diaphragm  
Reb blocked electrical resistance (the effective resistance of the voice-coil when the 

voice-coil sees an infinite mechanical impedance, or DC electrical resistance) 
R new-signal autocorrelation matrix 
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s the ‘Laplace variable’:  s = – iω = 12 −π− f  
S0 characteristic sensitivity of a filter 
Sd effective area of the loudspeaker diaphragm 
Sp effective area of a port 
Seff effective sensitivity 
t time 
T temperature, in °C 
Ts sampling period (interval) of a discrete-time system (=1/Fs) 
Tc time constant of a filter = 1/ωc 
u(t), u(s) velocity, generic; control signal output from a controller; input to a system 

represented in state-space form 
ud(t), ud(s), ud[n] diaphragm velocity 
up(t), up(s) port fluid velocity 
ud·f[n] diaphragm velocity, simulated from the force equation 
ud·v[n] diaphragm velocity, simulated from the voltage equation 
u new-signal vector 
v(t), v(s) voltage, generic; generic input signal to a controller 
vc(t), vc(s), vc[n] voltage drop across the terminals of the voice-coil  
vc·m[n] measured voltage  
vc·p[n] predicted voltage 
vu(t) voltage generated by velocity of the voice-coil, or ‘back EMF’ 
V0 volume of a cavity 
VAS volume of air with equivalent loading stiffness to suspension stiffness 
w weight vector of a filter, generic 
wopt optimal weight vector (solution to the Wiener filtering problem) 
xd(t), xd(s) diaphragm displacement as a function of time t, as a function of s in frequency 

(Laplace) domain 
xd·f[n] diaphragm displacement predicted from the force equation 
xd·v[n] diaphragm displacement predicted from the voltage equation 
Xm(s) mechanical mobility 
y(t), y[n] output, generic 
ym(t), ym[n] output, measured 
yp(t), yp[n] output, predicted 
Ymo(s) open-circuit mechanical mobility  
Zeb(s) blocked electrical impedance 
Ze(s) total electrical impedance  
Zmo(s) open-circuit mechanical impedance, i.e. the mechanical impedance (force/velocity 

ratio) of the diaphragm excluding electrical impedance and acoustical loading 
Zm(s) general mechanical impedance 
Zrm(s) mechanical-equivalent acoustic radiation impedance 
Zrmf(s) mechanical-equivalent acoustic radiation impedance on the front of a diaphragm 
Zrmp(s) mechanical-equivalent acoustic radiation impedance of a port radiating into free air 
Zrmr(s) mechanical-equivalent acoustic radiation impedance on the rear of a diaphragm 
Zrad(s) acoustic radiation impedance for lumped acoustic systems, i.e. the ratio of pressure 

to volume velocity of  lumped acoustical radiator (note )()( 2 sZSsZ raddrm = , 
where Sd is the effective area) 
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α temperature-resistance coefficient 
αk[n] derivative with respect to coefficient ak 

βk[n] derivative with respect to coefficient bk 
ε[n] error 
εoei[n] error of the output-error electrical current algorithm 
ζ damping ratio 
λn nth

 eigenvalue of a system, root of a denominator polynomial, pole in the s-plane 
ξ integrand stand-in variable for displacement (x) 
ξn nth zero of a discrete-time system, in the z-plane 
ξ(w) error-surface function of the weight vector w 
µ convergence parameter, generic 
π ratio of a circle’s circumference to its diameter 
πn nth

 pole in the z-plane 
ρ0 density of air under adiabatic conditions (~1.21 kg/m3) 
σu characteristic sensitivity of the discrete-time representation of the mechanical 

mobility of an SDOF system 
σx characteristic sensitivity of the discrete-time representation of the mechanical 

receptance of an SDOF system 
φ0 transduction coefficient, under small-signal conditions(=B·l), also referred to as 

‘Bl-product,’ or ‘force-factor’ 
φ(x) transduction coefficient, displacement-dependent  
φn nth-coefficient of a polynomial approximation to the variation of the transduction 

coefficient with respect to diaphragm displacement 
χ2 chi-squared error function 
ψ(x) inverse of the transduction coefficient φ as a function of displacement 
ψn nth coefficient of a polynomial approximation to the inverse of the transduction 

coefficient   
ω0 undamped resonance frequency (in radians / sec.) 
ωz undamped resonance frequency (in radians / sec.) of a system normalised to the 

sampling frequency of a digital system, = 2πf0 / Fs 
Ω ohm 
 
 

( )22
aua σ∂  derivative of σu (characteristic sensitivity of the discrete-time model of the 

mechanical mobility) with respect to a2, where σu  is defined as a function of a2 

][nuφ∂  derivative of diaphragm velocity ud[n] with respect to φ0 (small-signal transduction 
coefficient)  

][nukφ∂  derivative of the diaphragm velocity ud[n] with respect to φk 
][n

dk xφ∂  derivative of φk with respect to xd[n] 
][n

kφφ∂  derivative of ( )][nxdφ  with respect to φk 

 
§ section, e.g. §3.2.1 denotes sub-sub section 1 of sub-section 2 of Chapter 3.  
§§ sections, e.g. §§3.1-3.3 denotes to sections 3.1 to 3.3. 
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Abbreviations 
BEM Boundary Element Method 
DSP Digital Signal Processor (Processing) 
EMF Electro-motive force (voltage); specifically as used in discussion of ‘Back-EMF,’ as 

created in electrodynamic electro-mechanical transducers. 
FEM Finite Element Method 
FIR Finite impulse response, in reference to digital (discrete-time) filters, also known as a 

transversal filter, or tapped delay line filter 
FRF Frequency response function 
Hz Hertz (cycles per second) 
IIR Infinite impulse response, in reference to digital (discrete-time) filters also known as a 

recursive digital filter, filter with feedback coefficients, or autoregressive moving-
average (ARMA) model 

LHS Left-hand side 
LMS Least Mean Square (stochastic gradient) adaptive algorithm of Widrow and Hoff 
RHS Right-hand side 
SDOF Single-degree of freedom 
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1. Introduction 
The loudspeaker is the basic device for generating sound with electronic systems.  It is an old, well-
known gadget, dating back to the invention of the telephone in 1875.1 Its construction of magnets and 
coiled wire is familiar, sharing much with the rotating electric motor. The increases in inexpensive 
computing power in recent decades have spurred interest in the possibility that one might be able to do 
with a computer what cannot be done with the dead weight of magnets and wire-wound copper.  This 
thesis is an investigation into details of several such possibilities. 
 
Considerable research appeared on this subject in the 1990’s.  The declared purpose of most such 
research was to improve the quality of an existing loudspeaker by digital processing.  Specifically, the 
most common target has been to reduce nonlinear distortion inherent to a loudspeaker’s mechanical 
construction.  A slightly different view is taken here. This thesis considers how simple electronic 
processing can improve the efficiency, or reduce the size or cost of a given loudspeaker design.   
 
Such a custom designed processor-loudspeaker pair is practical only in the context of an integrated 
audio system, and is thus first briefly introduced.  Its basic components are shown in Figure 1.1, 
comprising a signal processor, power amplifier, and loudspeaker, each of which may be briefly 
defined as follows:   
Signal Processor: An electronic system for treating or modifying the audio signal in some way. 
Power amplifier: A power-electronics system for converting the ‘information’ audio signal from the 
processor to a power-drive signal, with sufficient energy to drive the loudspeaker. 
Loudspeaker: An electroacoustical transducer generating sound from the electrical power-drive 
signal produced by the power amplifier.  It should generate sound linearly with respect to the electrical 
drive signal, i.e. it should reproduce sound with good ‘fidelity’, so that the information in the audio 
signal is reproduced in the sound made by the loudspeaker. 
 

 

Signal
Processor

Power
Amplifier

LoudspeakerAudio
input signal

processed
audio signal

power
audio signal

acoustic
sound field

+
-

 
Figure 1.1: Integrated audio reproduction system. 

 
This ‘integrated audio system’ is used in many different types of commercial products, e.g. telephones, 
hearing aids, television sets, integrated ‘hi-fi’ systems and  ‘active monitors’ for speech or music 
reproduction.   As mentioned above, such systems must reproduce the sound field with a certain 
fidelity to the audio input signal.  Good fidelity reproduction is known to be necessary to maintain 
some desired degree of intelligibility of the speech, or quality of the music.  Fidelity is not important 

                                                      
1 The first moving-coil (electrodynamic) transducer for audio reproduction was described by Siemens (1874).  

However, Siemens’ device did not see widespread use as a loudspeaker as it is known today.  It is generally 
acknowledged in the loudspeaker engineering community that the first appearance of what is now thought of as 
an electrodynamic loudspeaker was first developed by Rice & Kellogg in 1925 (see ref.).  
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in some types of audio reproductions systems, such as audio alert, warning, or alarm systems.  These 
are not considered in this thesis.   
 
The cost/benefit analysis of introducing loudspeaker-enhancing signal processing is different for some 
types of products using an integrated audio system.  Mobile telephones, televisions, and modern 
integrated ‘hi-fi’ systems all employ fairly powerful digital computational systems for non-
loudspeaker related processing.  One example is the mobile telephone, which must employ significant 
digital signal processing for speech compression, i.e. coding and de-coding (codec processing).  For 
such products, the cost of adding loudspeaker-specific processing is much less than other products 
without such processors, because the hardware and systems for performing such signal processing are 
already present in the product.   
  
Most music signals, such as may be read from an audio compact disc (CD) or received with an FM 
radio, will have two or more separate audio signals (channels).  Much research has been performed 
and continues on signal processing and loudspeaker design for proper reproduction of these ‘multi-
channel’ audio signals.  In this thesis, the focus is on details of the mechanical construction of the 
loudspeaker driver1.  As these details can be considered in isolation from multi-channel considerations, 
only single-channel audio systems (systems for reproducing a single audio input signal) are considered 
in this thesis.  

Signal Processor 
A signal processor may be used in an integrated audio system to treat or modify the audio signal in 
some way.  As stated above, the purpose of the integrated audio system of Figure 1.1 is to acoustically 
reproduce some audio input signal.  As the loudspeaker must reproduce this signal with fidelity, the 
signal processor may be employed as a servo controller.2   
 
A servo system is considered in two blocks: a controller, and a plant.  The controller sends a control 
signal u(t) to the plant, based on some processing of the input signal v(t), to ensure that the plant 
output y(t) follows the  input signal v(t) as closely as possible.  For the specific case of the integrated 
audio system of Figure 1.1, the servo controller should ensure that the sound field reproduced by the 
loudspeaker follows the audio input signal. 
 
An intuitive feature to introduce to such a servo controller is to add closed-loop feedback.  Closed-
loop feedback systems feed the plant output back to the controller, as per the block diagram shown in 
Figure 1.2. For the case of the integrated audio system of Figure 1.1, this would mean giving the 
controller some feedback about how the loudspeaker is reproducing the audio input signal.  Feeding 
the output y(t) back to the controller theoretically permits the controller to compensate for problems or 
‘errors’ in the plant (the loudspeaker), and thus maintain maximum fidelity between the input v(t) and 
the output y(t).  If the signal processor can compensate for such problems, it will result in an overall 
higher fidelity of acoustic reproduction, improving the quality of the audio reproduction system. 
 

                                                      
1 The term ‘loudspeaker driver’ is used here to denote a loudspeaker element in isolation from its enclosure. 
2 The term servo controller is used here as it is understood within the field of automatic control systems (e.g. 

Elgerd, 1967). 
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Figure 1.2: Structure of a feedback, or ‘closed-loop’, control system. 

 
When considering the integrated audio system of Figure 1.1 as a servo system, the signal processor is 
part of the controller, and the loudspeaker is part of the plant.  The power amplifier, however, may be 
either part of the controller, part of the plant, or part of both.1    
 
The advantage of a feedback controller is that it can automatically compensate for various problems in 
the loudspeaker.  Typical ‘problems’ with loudspeakers are irregular frequency response2 (causing 
‘colouration,’ or ‘timbral imbalance’ in the sound), or nonlinear distortion (causing ‘muddiness’ or 
‘fuzziness’ and other unpleasant characteristics in the sound).  Loudspeaker designers and academics 
have studied and experimented with this kind of feedback system for nearly as long as there has been 
such a thing that one could call a ‘loudspeaker’ (Adams, 1979).   
 
Feedback controllers for loudspeakers have a significant disadvantage: the output signal y(t) of a 
loudspeaker is impractical to obtain.  This disadvantage is explained as why no type of closed-loop 
controller for a loudspeaker has seen much commercial success, despite some 75 years of research and 
development in academia and industry on such controllers.3   The difficulty can be at least 
superficially understood by referring back to Figure 1.1.  The ‘output’ of this system is the sound field 
radiated from the loudspeaker.  One could ‘collect’ an output with a microphone at some point in the 
sound field, and employ this as a feedback signal.  However, due to the nature of sound wave radiation 
this feedback signal will be different for different microphone positions.  One solution to this problem 
could be to place the microphone at the listener’s ear.  However, although such a system could 
theoretically serve as a good feedback signal, it would be good only for that one user, and only for one 
of the user’s ears.  The sound field will be different between the user’s right and left ear, and as the 
user’s head moves relative to the loudspeaker.  Thus correcting the sound for one ear would make it 
worse for the other ear, and even worse still for other listeners in the room. 
 
An even more problematic aspect of such a feedback signal is that acoustic propagation from the 
loudspeaker to the microphone will introduce a delay, potentially causing the feedback system to fail 
basic Nyquist stability criteria, a fundamental measure of the stability of feedback systems. Other 
feedback signals have been tried such as measurement of the loudspeaker’s vibration or using a ‘back-
EMF’ motional-induced signal.  None of these systems have met with significant commercial success, 

                                                      
1 Whether the power amplifier is part of the controller, plant, or both depends mainly on the design of the power 

amplifier, and whether the signal processor is designed with analogue or digital electronics.  The different 
possibilities are discussed in detail in Chapter 3, ‘Theory of active control of loudspeakers.’ 

2 Also referred to as ‘linear distortion.’ 
3 This problem of motional feedback for loudspeakers is discussed in many papers, e.g. Hanson (1973), Tillett 

(1975), Adams (1983), Greiner and Sims (1984), Mills and Hawksford (1989), and Klippel (1992), among 
others.  
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because of either excess cost or poor robustness, or both.1  A more detailed review of these systems is 
in Chapter 3 of this thesis. 
 
If the problematic dynamics of the loudspeaker could be known a priori, the controller could simulate 
them by an appropriate model, eliminating the need for measurement of an output signal.  This type of 
processor is referred to as a feedforward or open-loop controller, a block diagram of which is shown in  
Figure 1.3.  Dispensing the need to measure an output signal from the loudspeaker is a significant 
advantage of the feedforward controller.  Its disadvantage, however, is that dynamics of the 
loudspeaker tend to drift with age, temperature, and other factors.  Thus feedforward controllers are 
susceptible to parametric misalignment between the controller’s model of the plant and the plant-
under-control.  

 
 

Controller Plant
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signal
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Figure 1.3: Structure of a feedforward, or ’open-loop’, control system. 

 
The problem of misalignment between the controller’s a model of the plant and the actual plant can be 
solved by system identification.  System identification uses the plant model to simulate, in real time, 
the plant’s output.  Using adaptive filtering, parameters of the model are tuned to minimise the 
difference between the output predicted by the model and that measured from the plant.  The 
‘identified’ parameters of the model can then be used by the feedforward processor, thereby ensuring 
the it is properly tuned to the plant.  Adding this feature to the feedforward controller results in a 
controller known as an adaptive feedforward controller, a block diagram of which is shown in  
Figure 1.4.  The key advantage of the adaptive feedforward controller over the feedback controller is 
that it can use a more indirect output signal from the plant, which is more practical and thus less 
expensive to obtain.  For this reason, it has been considered the most promising processor 
configuration for loudspeakers (Klippel, Nov. 1998), (Klippel, 1999).   
 

Plant

Plant Model

Input Control 
signal

Output

Plant feedback

v t( ) u t( ) y t( )

y tm( )

y tp( )
Σ-

+

Feedforward
Processor

System ID by 
Adaptive filtering

Controller

 
Figure 1.4: Structure of an adaptive feed-forward control system. 

 

                                                      
1 This is in contrast to some other applications of motional feedback.  One successful applications is for 

read/write head arms for disk drives, which use a drive mechanism very similar to that used in a loudspeaker 
(some disk drive terminology, such as ‘voice-coil,’ is even borrowed from the loudspeaker industry).  The 
enabling factor for disk drives seems to come from the fact that position information for the read/write head 
arm can be determined directly from formatting information on the disk (Abramovitch and Franklin, 2002). 
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The basic theory of algorithms for updating the parameters of the plant model in the controller, using 
recursive adaptive filtering, is presented in Chapter 3.   

Power Amplifier 
Power amplifiers in modern systems are nearly invariably made from solid-state electronics.  These 
designs produce amplifiers with low output impedance, otherwise known as constant output-voltage 
sources with fixed gain throughout the audio frequency range.  Amplifiers employing vacuum-tubes, 
or ‘valves’ with considerable output impedance have not completely disappeared, though their 
manufacture and use has in the last few decades been relegated to a handful of historical enthusiasts 
and musical instrument amplifiers.  To date, nearly all power amplifiers have operated on an analogue 
input signal.  Newer amplifiers, variably referred to as ‘switching’ or ‘Class-D’ amplifiers, have 
shown the ability to operate on a digital audio input signal.  As these amplifiers also produce a low 
impedance output, they may be treated conceptually in the same manner as traditional solid-state 
amplifiers.   
 
Other, special types of amplifiers are discussed in the context of motional feedback in Chapter 3.  
However, these are included only for the historical background of the application of feedback to 
loudspeakers.  In all other parts of this thesis, amplifiers are idealised as constant-gain, constant 
voltage sources. 

Loudspeaker 
The idea of a loudspeaker is likely to be familiar to anyone young enough to read this thesis.  The 
original term comes from loud speaker (two words),1 which was to be contrasted with a ‘regular’ 
speaker (a telephone receiver).  It was ‘loud’ in that sound could be heard without it being held to the 
ear.  Early loudspeakers (1900-1920) employed small reeds or diaphragms coupled to a horn.  The 
horn acted as an impedance transformer, matching the high impedance of such mechanical diaphragms 
to the low impedance of air.  The first widely successful loudspeaker not to use a horn was developed 
by Rice and Kellogg (1925).  Their invention, known today as a ‘direct-radiator’2 loudspeaker, is 
widely recognised as the first appearance of what is understood by a ‘loudspeaker’ today.   
 
Loudspeakers have taken many different forms during their development, a good review of which was 
given already half-a-century ago by Beranek (1955).3  It is already clear in Beranek’s mid-century 
review that industry at large had settled on the electrodynamic loudspeaker type4.  This type of 
loudspeaker uses the electrodynamic principle for electro-mechanical transduction, from which it 
derives its namesake.  Other electro-mechanical transduction principles do exist, and have been used 
to construct other types of loudspeakers.  A good contemporary review these different transduction 
principles is provided by Hixson and Busch-Vishniac (1997).  As the electrodynamic transduction 

                                                      
1 Loud Speakers was the title of the first textbook dedicated to loudspeakers. (McLachlan, 1934) 
2 Rice and Kellogg’s loudspeaker was a ‘direct’ radiator in the sense that sound was radiated directly from the 

diaphragm, without the acoustical aid of a horn.  Although horn-loudspeakers remain in use for high-output 
loudspeaker systems for public address, nearly all loudspeakers for domestic, portable, and automotive audio 
systems use direct-radiator type loudspeakers. 

3 It is a sad but generally acknowledged fact that precious little new has been done in loudspeaker design since 
the 1950’s.  One manifestation of the this appears in monthly patent reviews on loudspeakers by George L. 
Auspurger published in the Journal of the Acoustical Society of America, which all too often (accurately) read 
‘Every few years someone patents the familiar invention from 195X…’  

4 Electrodynamic-type loudspeakers are also referred to as moving coil loudspeakers. 
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principle remains the only one in widespread use in loudspeakers for audio-frequency reproduction, 
the electrodynamic loudspeaker is the only type considered in this thesis. 1   
 
Audio systems which must reproduce the full audio frequency bandwidth typically use two or three 
loudspeakers, each for a separate frequency range.  This due to the difficulty in reproducing the three-
decade2 wide bandwidth of the audio frequency range with a single transducer.  This thesis is 
concerned with the effects of signal processing on mechanical construction of the loudspeaker, which 
can be considered in isolation from multi-transducer loudspeaker systems.  Additionally, this thesis 
has focused particularly on the ‘microspeaker,’ intended for reproducing speech frequencies, which be 
done effectively over a frequency bandwidth of only one decade.  For these reasons, only single-
loudspeaker systems are considered in this thesis.   

1.1. Active control of loudspeakers 
The goal of research reported in this thesis has been to find ways, if any, to simplify the mechanical 
construction or improve the efficiency of a loudspeaker by electronic signal processing.  This is, 
broadly speaking, the same goal as other systems employing active control.  
 
The idea of an ‘actively controlled’3 or ‘smart’ loudspeaker has been discussed by several authors.  
However, these previous discussions have referred to control of different aspects of the loudspeaker 
from those investigated in this thesis.  Sophisticated digital systems for controlling high-count 
loudspeaker arrays, variably called ‘system controllers’ or ‘loudspeaker processors’ have been in 
commercial use for some years (Forsythe et al., 1994).  In this thesis, the function of the processor is 
considered with regard to how it can simplify the mechanical construction of the loudspeaker.   
 
Active control has shown the ability to produce a more economical solution than passive mechanical 
systems in various engineering problems.  Two well-known examples are flight control of aerospace 
structures and the reduction of acoustic noise and vibration.  Active control of aeroplanes, or ‘Fly-by-
wire’ flight control provides two key advantages over passive-mechanical control systems: the ability 
to automatically stabilise an unstable system, and the reduction of weight of a mechanical hydraulic-
assist system.  These two features have seen Fly-by-wire flight control systems serve as a method for 
cost-reduction in commercial civilian aircraft (Collinson, 1999).  Active control of acoustic noise has 
also proven more economical than passive techniques in some applications, such as hearing-protectors 
(ear defenders) and propeller-based passenger aircraft (Elliottt, 1999).  In both of these successful 
fields of active control, electronic processing offers a more economical solution than passive systems, 

                                                      
1 It is generally considered within the Hi-Fi loudspeaker industry that the electrodynamic principle is used by at 

least 99% of all loudspeaker elements.  One may arrive at a different percentage if one considers that 
telephones, personal stereo headphones, automotive audio systems, and portable consumer electronics have all 
exclusively used electrodynamic loudspeakers for several decades.  As annual production of loudspeakers for 
these products runs into the hundreds of millions, the percentage figure is thought to by some to be closer to 
99.9999%.   

  One may wonder whether other known transduction principles have been neglected by force of habit over the 
decades.  Perhaps the other principles could be used to great effect, but have been forgotten by the mainstream 
loudspeaker industry, be it by oversight, ‘technology momentum,’ or vested interest?  The truth is that no small 
amount of effort has been spent trying to develop loudspeakers based on non-electrodynamic transduction 
principles.  Any doubter of this fact is referred to Frederick Hunt’s 92-page historical review of 
electroacoustics in his 1954 text Electroacoustics (Hunt, 1954). 

2 The term ‘decade’ is used here to denote a range of frequencies wherein the highest frequency is 10 times the 
lowest frequency.  One decade equals approximately 3.322 octaves. 

3 The term actively controlled loudspeaker is intended to be different from an active loudspeaker; the latter term 
is commonly used to describe loudspeakers with built-in power amplifiers (i.e. in the same cabinet),  
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primarily through weight reduction, achieved by limiting some mechanical bulk needed for the 
equivalent passive solution, particularly for aerospace applications.  To be sure, these applications of 
active control have a significant advantage over the loudspeaker: the cost of a civilian airplane is $40-
100 million, whereas a loudspeaker averages about $1.  This different cost basis for the addition of an 
active control system may explain why it has yet to be applied with commercial success to the 
loudspeaker. 
 
Of particular interest in battery-powered audio reproductions systems is a loudspeaker’s the pressure 
to voltage sensitivity in addition to its efficiency.  This is due to the limited voltage output capability 
of amplifiers in battery-powered products.  Due to the need to lower battery voltages in order to 
decrease the power consumption of logic circuits, the voltage available to power amplifiers is limited.  
Furthermore, no suitably compact and efficient voltage step-up converters are known to exist which 
could solve this problem.  Thus in many cases, the acoustic output of audio systems in battery-
powered products is limited by the voltage sensitivity of the loudspeaker, and not the power handling 
capabilities of the amplifier and loudspeaker.   
 
It was suggested by Klippel (2000), that active control of nonlinear distortion in a loudspeaker be used 
to create the same displacement in an electrodynamic loudspeaker, but with a shorter voice-coil height.  
Furthermore, it was suggested that the additional output from the amplifier required for the shorter 
voice-coil would be modest.  This shortening of the voice-coil height can result in a more efficient 
loudspeaker in two ways.  Firstly, shortening the voice-coil height permits concentration of the coil 
wire into the strongest part of the magnetic field, resulting in a higher basic current-to-force 
electrodynamic transduction factor1.  Secondly, shortening the voice-coil height will reduce the 
moving mass of the loudspeaker; as the electrodynamic loudspeaker is a mass-controlled transducer, 
this will increase its basic sensitivity.  The trade-off between a shorter coil height and the additional 
electrical output needed to compensate for the nonlinear distortion created by shortening the coil 
height is simulated in detail in Chapter 5.   
 
The general result of these simulations shows that the highest overall-sensitivity is achieved for a coil-
height approximately equal to the magnet gap height.  This result has been confirmed with a series of 
measurements of specially-prepared shortened-coil-height loudspeakers, as reported in Chapter 5.  

1.2. Organisation of thesis 
 
Chapter 1. Introduction. 
 
Chapter 2.Loudspeaker models: Classical linear and nonlinear models of the loudspeaker are 
reviewed.  Application of these models to a miniature electrodynamic loudspeaker, defined as a 
microspeaker, is discussed.    As active control systems use digital processing techniques that operate 
in discrete time, methods for representing the classical linear and nonlinear loudspeaker models in 
discrete time are reviewed.  A simple discrete-time model of a loudspeaker including its dominant 
nonlinearities is developed from established theory.  The chapter concludes with a presentation of 
causes of parametric variation in these models, leading to parameters which cannot be known a priori. 
 
Chapter 3. Theory of active control of loudspeakers:  This chapter presents the theory of signal 
processing for active control of loudspeakers.  It presents classical and recently published theory in the 
context of loudspeakers.  The discussion is divided into three categories: (i) feedback processing, (ii) 
                                                      
1 Also known as a transduction coefficient, or B·l-factor; the latter term is most commonly used in the 

loudspeaker industry.  This term is defined in the context of the general classical models of the loudspeaker in 
Chapter 2.  
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feedforward processing, and (iii) adaptive feedforward processing (as per Figures 1.2 – 1.4 above).  
The discussion concludes that the adaptive feedforward processing structure is the most practical for 
active control of loudspeakers.  
 
This chapter includes a special section on the theory of feedback linearisation, which is included as an 
extended discussion on feedforward processing, i.e. (ii), above.  The history of the application of 
feedback linearisation to the loudspeaker and how it is used to develop a nonlinear feedforward 
controller for active nonlinear control of loudspeakers is presented.  In this section a new application 
of feedback linearisation to the loudspeaker – a discrete time form – is presented, using the discrete 
time loudspeaker model developed in chapter 2.  This is used to develop a new, simple algorithm for 
nonlinear control of loudspeakers. 
 
Following the conclusion that adaptive feedforward control is the most practical form for active 
loudspeaker control, a brief review of adaptive filtering theory is presented, with particular focus on 
the LMS algorithm for adaptive recursive (IIR) filters. 
 
Chapter 4. Loudspeaker system identification: This chapter presents implementation of the system 
identification part of the adaptive feedforward controller of Figure 1.4.  A direct-form LMS IIR output 
error algorithm is used to identify those parameters of the discrete-time loudspeaker model which 
cannot be known a priori, as discussed in chapter 2.  Three different plant model structures are 
presented.    Equations for iterative parameter identification are derived according to basic adaptive 
filtering theory.  Convergence performance of the different plant model structures, using data 
measured on actual loudspeakers, are presented for different types of signals.  Conclusions are drawn 
about the most efficient plant model structure for loudspeaker system identification.  
   
Chapter 5. Applications of active control of a loudspeaker: Two applications of active control to a 
loudspeaker and their impact on loudspeaker design are considered.  Linear control, or equalisation, is 
first considered briefly.  Nonlinear control, or nonlinear distortion compensation, is considered in 
more detail.   
 
The benefit of nonlinear distortion compensation is investigated by simulation.  The trade-off between 
sensitivity increase from a reduced coil height versus the additional amplifier output required for 
compensation of nonlinear distortion caused by the reduced coil height is evaluated.  From the 
simulation results, the overall sensitivity for different coil heights is considered as a function of coil 
displacement, for a range of frequencies.   
 
Based on the simulation results, a special set of modified coil-height loudspeakers were prepared.  
Linear and nonlinear measurements on these samples are presented.  The ability of the new algorithm 
for nonlinear control of loudspeakers, presented in chapter 3, to compensate harmonic distortion 
generated in these samples is assessed, and measurements of the reduction in harmonic distortion are 
presented.  Conclusions are drawn about the optimal coil height of loudspeakers for use with active 
control. 
 
Chapter 6.  Conclusions: Conclusions are drawn on active control of loudspeakers using adaptive 
feedforward processing and how it can benefit loudspeaker design.  Potential problems in commercial 
implementation are identified.  Suggestions for further research are given.  
 
Appendix A. Experimental set-up and tuning: Experimental set-ups used for measurements made in 
various parts of the thesis are presented.  Diagrams and photographs of the experimental set-ups are 
shown.  Some techniques used for equipment calibration and parameter tuning are presented. 
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Appendix B. Experimental determination loudspeaker parameters:  A method for determining the 
linear parameters of a loudspeaker is presented.  This provides accurate determination of parameters of 
the single-degree-of-freedom loudspeaker model, as well as methods for verification of the model by 
reference to measured frequency response functions.  Results from this method are used to verify 
results from the adaptive algorithms presented in Chapter 4.  As this method has not been previously 
published, it is included here. 
 
Appendix C. Modal analysis of loudspeaker diaphragms: Techniques for developing multi-degree 
of freedom models for loudspeaker diaphragms based on traditional modal analysis for vibrating 
systems are presented.  The techniques presented here could be used to develop higher-order models 
of loudspeaker diaphragm vibration for a feedforward processor, although such techniques are not 
presented in this thesis.  The technique presented here do present a theoretical framework for 
understanding some discrepancies seen between models and measured results. 
 
Appendix D. Rocking modes in single-suspension loudspeakers:  Methods for modelling ‘rocking 
modes’ in single suspension loudspeakers are presented, based upon techniques for modal analysis of 
loudspeaker diaphragms presented in Appendix C.  The models of rocking modes describe the 
discrepancy between measured and modelled results seen in other parts of the thesis.   
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2. Loudspeaker models 
This chapter reviews previously published linear and nonlinear models of loudspeakers.  The classical 
linear models of the electrodynamic loudspeaker are developed here from first principles.  Methods for 
introducing nonuniformity of the parameters of the classical linear models, leading to nonlinear 
models, are reviewed thereafter.   
 
A study of methods for discrete-time representation of the classical linear models is given.  Parametric 
variation in these models of the loudspeaker, due to thermal fluctuations and other factors, are 
discussed.  At the end of the chapter, a nonlinear discrete-time model of the loudspeaker is developed 
by using simple continuous-to-discrete-time model conversion methods and the previously published 
nonlinear loudspeaker models, with special consideration for inherent discrete-time stability. 
 

2.1. Linear models of loudspeakers 
This research has focused specifically on ‘microspeakers;’1 these are small, thin loudspeakers 
resembling earpieces or telephone receivers, used in hand-held telephones for generating alert tones 
and speech for hands-free telephony.  The differences between the ‘microspeaker’ and traditional 
direct-radiator electrodynamic loudspeaker are explained in more detail below. 
 
The basic elements of a thin electrodynamic loudspeaker, or ‘microspeaker,’ are shown in Figure 2.1.  
A coil of wire, called the ‘voice-coil’ (1), is attached to a diaphragm (2), that is mounted on a fixed 
frame (4) via a suspension (3).  A magnetic field is generated by a permanent magnet (5) that is 
conducted to the region of the coil via a magnetic circuit (6).  This generates a concentrated magnetic 
field in the region of the coil gap (7).  Holes in the rear frame (8) provide ventilation to the rear 
enclosure.   
 
According to laws of classical electrodynamics, due to the presence of the magnetic field, electrical 
current passing through the voice-coil will generate a force fc  in the direction shown in Figure 2.1 
(assuming proper orientation of the coil current and magnetic field).  This force fc will generate a 
displacement xd in the direction shown. 

                                                      
1 The term ‘microspeaker’ is commonly used among producers and telephone manufacturers in North America, 

Japan, and the Pacific Rim.  The term ‘telecom loudspeaker’ is more common in Europe.  Although this thesis 
is published by a European institution, the term ‘microspeaker’ is used herein, for brevity, to distinguish this 
type of speaker from the traditional direct-radiator electrodynamic loudspeaker. 
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Figure 2.1: Cross-section of a thin electrodynamic loudspeaker (‘microspeaker,’) showing its basic components.  

 
The microspeaker is made from the same basic elements as ordinary electrodynamic loudspeakers, 
differing primarily in scale and shape.  There are some differences worth noting, which are pointed out 
here by comparison to a typical low-frequency electrodynamic loudspeaker, an example of which is 
shown in Figure 2.2.    As shown in Figure 2.2, the voice-coil of a typical loudspeaker is placed on a 
former (1b), making a mechanical connection to the diaphragm (2a & 2b).  The coil former is typically 
a hollow cylinder.  This requires that the diaphragm be made in two parts, the outer diaphragm (2a) 
and a dust cap (2b), placed over the coil former.  The dust cap increases the loudspeaker’s overall 
effective radiating area and prevents foreign debris from entering the coil gap.  The last difference that 
will be noted here is in the suspension; a typical loudspeaker employs two suspensions: an outer 
suspension (3a) connecting the diaphragm to the frame (often called the ‘surround’), and an inner 
suspension (3b) connecting the coil former to the frame, often called the ‘spider’ due to its spoke 
construction in early generations of loudspeakers.  The pair of suspensions create a strong stiffness 
against ‘rocking’ or ‘wobbling’ of the diaphragm-coil assembly.  The absence of this second 
suspension in microspeakers makes the microspeaker particularly susceptible to this problem.  This 
effect can be seen in several measurements presented in this thesis, and is discussed in detail in  
Appendix D.  
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Figure 2.2: Cross section of a typical low-frequency electrodynamic loudspeaker.   

At low displacements of the diaphragm-coil assembly, the electro-mechano-acoustic dynamics are 
linear, and thus linear models can be used to describe the relationship between the two.1  At higher 
displacement, the relationship is not linear, as parameters of the model vary with displacement.  
Distinguishing between ‘high’ and ‘low’ displacement in this context depends on a specific 
loudspeaker’s construction.  The dominant characteristics are the linearity of the restoring force 
provided by the suspension (3) and the uniformity of the force-factor created by the placement of the 
voice-coil (1) in the magnetic field (7).  Linear models which form part of classical loudspeaker theory 
are presented below.  The presentation is broken into the electrical (§2.1.1), mechanical (§2.1.2), and 
acoustical (§2.1.4) component, with a discussion of the application of these models to the 
microspeaker.  Models of the parametric nonuniformity that result in nonlinear behaviour are 
presented in §2.2, along with measurements of this nonuniformity found in a typical sample of a 
microspeaker. 

2.1.1. Electrical dynamics 
A good, simple model for the electrical behaviour of a loudspeaker is shown in the current loop on the 
left-hand side of Figure 2.3. 
 

                                                      
1 The terms ‘linear’ and ‘nonlinear’ are used here in the algebraic sense, i.e. wherein a linear system obeys the 

principles of scalability and superposition, and a nonlinear system does not. 
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Figure 2.3: Simplified model of electrical elements in an electrodynamic loudspeaker. 

 
The amplifier output is represented by the voltage source vc(t), as nearly all amplifiers used for 
loudspeakers are of low output-impedance, constant voltage type.  The resistor Reb represents the 
electrical resistance of the coil wire.  Electrical inductance due to the voice-coil’s shape and 
ferromagnetic material in its vicinity is modelled by the inductor Leb.   Electro-mechanical transduction 
is modelled by a gyrator, shown in the middle of Figure 2.3.  This is similar to a transformer, except 
that voltage in the primary loop scales with the current in the secondary loop (as opposed to voltage in 
the secondary loop for a transformer.)  The converse is true for current in the primary loop and voltage 
in the secondary loop.  The current in the secondary loop, on the right-hand-side of  Figure 2.3, is 
analogous to the voice-coil velocity ud (t), and therefore the voltage drop induced by the gyrator is the 
product φ0ud(t), where φ0 is the gyrator’s constant.   All of these effects may be combined into this 
single frequency (Laplace) domain equation: 

( ) )()()( 0 susisLRsv dcebebc φ++=  (2.1) 

where the terms in  (2.1) have the following names:  
vc(s) Voltage drop across the terminals of the voice-coil. 
Reb Blocked electrical resistance. 
Leb Blocked electrical inductance. 
φ0 Transduction coefficient (same as ‘B·l-factor,’ or ‘force-factor.’) 
ud(s) Velocity of the diaphragm and coil assembly. 
s  The ‘Laplace variable,’  = – iω, where 1−=i , and ω = 2πf, where f is the frequency in 

Hz. 
 
The terms Reb and Leb are the most common description of a loudspeaker’s internal electrical 
impedance.  Together they describe the electrical impedance when the coil may not move (is 
mechanically blocked.) It is thus called the blocked electrical impedance, and represented by the 
symbol )(sZeb .   One may, therefore, generalise  (2.1) to  

)()()()( 0 susisZsv dcebc φ+=  (2.2) 

A phenomenon called eddy currents results in a reactive blocked electrical impedance that differs 
significantly from that of a simple inductor.  A good model of this phenomenon was developed by 
Vanderkooy (1989), wherein the effect was described as an inductance varying with the square-root of 
frequency, i.e.: 

fZ eb ∝}Im{  (2.3) 
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Typical examples of the blocked electrical impedance measured from actual loudspeakers are shown 
in Figure 2.4 and Figure 2.5.  The measurement shown in Figure 2.4 is from a full-range loudspeaker, 
and that shown in Figure 2.5 is from a microspeaker.  The ‘blocked’ condition (no mechanical 
movement) for the full-range loudspeaker has been ensured by placing cyanoacrylate adhesive (‘super-
glue’) in the coil gap.   The measurement for the microspeaker has been synthesised by the difference 
between the total electrical impedance and the velocity-induced EMF by a measurement of the velocity, 
using a method described in detail in Appendix B.   
 
The reactive (imaginary) part of the impedance of the full-range loudspeaker decreases linearly with 
frequency, as it would for a pure inductance, down only to about 200Hz.  From 200 to 2000Hz it 
varies with f ½, as per the model developed by Vanderkooy, and above 2000Hz it is more or less 
invariant with frequency up to the end of the audio frequency range.  This strong eddy-current effect 
has been intentionally introduced by the designer by attaching a hollow cylinder mounted on the pole 
piece (part (9) in Figure 2.2).  This has the benefit of reducing the overall blocked electrical 
impedance at higher frequencies, thereby increasing the sensitivity at these frequencies (Rausch et al., 
1999)1.  By contrast, no such effect is seen in the microspeaker.  Its reactive impedance decreases 
linearly with frequency, and is thus well-modelled by a simple inductor over the audio frequency 
range.    
 
It is also noted that, for the microspeaker, the overall level of the reactive impedance is low relative to 
the resistive part over the telephone-band frequency range (up to 4000Hz).  This makes it possible, in 
some cases, to ignore the effect of the inductance, thereby significantly simplifying some aspects of 
modelling the loudspeaker’s dynamics. 
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Figure 2.4: Typical blocked electrical impedance of a full-range loudspeaker. Upper: Real part; Lower: 
Imaginary part.  This loudspeakers .employs a hollow copper cylinder on the pole-piece to reduce the electrical 
inductance at high frequency [see Rausch et al. (1999), p. 417, Fig. 8, for a discussion of this effect].   

 

                                                      
1 see Figures 8 and 10 of Rausch et al. (1999). 
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Figure 2.5: Typical blocked electrical impedance for a microspeaker.  Upper: Real part; Lower: Imaginary part.  
The real part is synthesised using the RHS of (B.9), and the imaginary part is synthesised using the RHS of 
(B.10), both presented in Appendix B.  The aberration appearing at approximately 900Hz is an error caused by 
large variations of with respect to frequency in the originally measured frequency response functions from 
which these were synthesised.   

2.1.2. Mechanical dynamics 
A good model of the mechanical dynamics of the electrodynamic loudspeaker is a single-degree-of-
freedom (SDOF) mechanical oscillator.1  A diagram showing an analogous mechanical system is shown 
in Figure 2.6. 
 

+xd

md
kd

cd

Zrm

+fc

vc

φ0

to voice 
coil 

power amplifier

  
Figure 2.6: Single-degree-of-freedom (SDOF) mechanical representation of dynamics of an 
electrodynamic loudspeaker.  The element Zrm is a generalised mechanical impedance, representing 
the acoustic loading. 

 

From classical mechanics, the SDOF system is described by this second-order linear inhomogeneous 
differential equation: 

                                                      
1 Higher-order models of mechanical dynamics, or multi-degree of freedom (MDOF) models, have also been 

studied as part of the research for this thesis.  They are not central to the theory of active control as developed 
in this thesis, though they are used to explain some differences between modelling and measurement in various 
parts of this thesis.  For this reason, MDOF models of mechanical dynamics of loudspeakers are discussed in 
Appendix C and Appendix D. 
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where the terms in  (2.4) have the following names: 

md Diaphragm mass 
xd(t) Displacement of the diaphragm. 
cd Damping due to the suspension. 
kd Stiffness (restoring force) due to the suspension. 
fc(t) Force on the voice-coil. 
 
A generalised mechanical impedance Zmo(s) is defined by the Laplace transform of  (2.4) 
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where ud(s) is the diaphragm velocity (i.e. the time derivative of xd(s), the diaphragm displacement).  
The term Zmo(s) is the in-vacuo open-circuit mechanical impedance. It describes the diaphragm’s force 
to velocity ratio under these two conditions: 
• The voice-coil is open-circuit ( ic(s)=0 .) 
• The loudspeaker is in a vacuum, removing acoustical loading ( ps (s) = 0 .) 
 
The term Zmo(s) is also referred to as the ‘internal mechanical impedance.’  
 
The mobility is another important transfer function of an SDOF system, as it more directly characterises 
its resonance.  It is given by  the multiplicative inverse of the impedance as so: 
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The denominator of this function may be factored as so: 
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where λ1 and λ2 are the roots of the denominator polynomial of  (2.6).  These define the eigenvalues of 
the mechanical system, giving the location of the transfer function’s poles in the s-plane.  They are 
calculated from the system’s physical parameters according to 

2
0021 1, ζ−ω±ζω−=λλ i  (2.8) 

where ω0, the undamped natural frequency, is given by  

d
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and where ζ, the damping ratio, is given by:  
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d
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2
1=ζ  (2.10) 



40 Chapter 2 
 

 

The mobility transfer function of (2.7) may be further separated into first-order terms by partial 
fraction expansion, as so:  
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This form is particularly convenient for developing an expression for the impulse-response in 
continuous-time by inverse Laplace transform, as will be used later in this chapter. 

2.1.3. Electro-mechanical transduction 

Interaction between the electrical and mechanical components is caused by the classical 
electrodynamic interaction of line currents and static magnetic fields.   As described in §2.1.1 above, 
the forcing term fc(t) on the right-hand-side of (2.4) is produced by a current flowing through a coil in 
the magnetic field, which may be modelled by  
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where ic(t) is the voice-coil current and l is the effective length of the voice-coil wire in a magnetic 
field of flux density B.  These two quantities are often referred to together as the B·l product.  As both 
l and B are constants, it is convenient to define their product as the single scalar φ0 called the 
transduction coefficient on the urging of Birt (1991).  The transduction coefficient φ0 gives a ratio of 
force to current, and is therefore also referred to as the force factor. 

2.1.4. Acoustical components 
The acoustic fluid affects the mechanical behaviour of the loudspeaker.  These effects can be modelled 
by linear components, assuming the acoustic pressures generated by the diaphragm are accurately 
described by the linear acoustic equations.  These have the effect of adding terms on the left-hand-side 
of the basic diaphragm equation of motions,  (2.4).   As they are linear operators on xd(t),  they may be 
separately lumped together, and defined as a single distinct impedance.  For this reason, the acoustic 
effects on the mechanical behaviour are called the acoustic radiation impedance.  Therefore the total 
mechanical impedance Zm(s) is defined by  
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sfsZ rmmo
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c
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where Zrm(s) is the mechanical-equivalent acoustic radiation impedance.  It is related the traditional 
lumped-parameter acoustic impedance Zrad(s) by )()( 2 sZSsZ raddrm = where Sd is the effective radiating 
area of the loudspeaker’s diaphragm.   
 
In most applications the loudspeaker is mounted in a cabinet or baffle that prevents acoustic 
interaction between the front and rear sides of the diaphragm. This permits the radiation impedance on 
the front and rear sides to be treated independently.  From the ‘point of view’ of the loudspeaker, the 
front and rear loading may be summed together with the internal mechanical impedance as so: 

)()()()( sZsZsZsZ rmrrmfmom ++= , (2.14) 

where Zrmf(s) is the front-side acoustic impedance, and Zrmr(s) is that on the rear-side.  Parametric 
models of the radiation impedance are developed below. 

Closed box enclosure 
The simplest rear-acoustic loading commonly used for loudspeakers is a closed-box enclosure.  
Mounting a in such an enclosure, as per Figure 2.7, prevents front-to-back sound pressure cancellation, 
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resulting in monopole radiation (instead of dipole radiation, which would be the case without the 
enclosure). 
 

Vc

Rear volume Internal pressure
p tc( )

Sd

Effective diaphragm
radiating area

 
Figure 2.7: Loudspeaker mounted in a closed-box enclosure 

 
If all dimensions of the cabinet are small compared to the largest wavelength considered, the pressure 
is constant throughout the cavity.  In this case acoustic pressure p(t) in the cavity is determined by the 
changes in the cabinet’s volume caused by movement of the diaphragm.  Consider the cavity of 
volume V0 shown in Figure 2.8, wherein a pulsating sphere, the volume of which changes according to 
V(t).   

 
V t( )
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Figure 2.8: Cavity of volume V0 containing a sphere with oscillating volume V(t). 

 
Assuming adiabatic temperature fluctuations, the acoustic pressure in the cavity will be  
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The added volume in the cavity V(t) is equal to the product of the effective area Sd and average 
displacement –xd(t), where a positive displacement is directed outward from the cavity.   Taking the 
time derivative of  (2.15) and replacing V(t) with –Sdud(t) produces: 
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Rearranging these terms and converting to the Laplace domain gives  
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To convert this to a mechanical-equivalent impedance, one should multiply by Sd.  Note that a positive 
pressure inside the cabinet, on the rear diaphragm, results in a force in the same direction as the  
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velocity.  A positive reactive force resulting from a positive causal velocity denotes a negative 
impedance, and thus the effective mechanical impedance produced by the cavity is equal to the 
negative of the right-hand-side of  (2.17), i.e.  
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Vented-box enclosure 
The addition of a second component to the closed-box enclosure, a lumped mass of air in a small duct 
as per Figure 2.9, creates an additional degree of freedom in the system.  This system is characterised 
by the ratio of port fluid velocity to diaphragm velocity, and the resulting acoustic radiation impedance 
presented to the rear side of the driver.  This benefits the system response by permitting a reduction in 
the cut-off frequency, as well as a reduction in the pressure/displacement ratio.  The latter permits 
higher acoustic output for the same range of linear displacement.  
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Figure 2.9: Definition of parameters used to for a single-degree-of-freedom model of ported cavity dynamics 

The ratio of port fluid velocity to diaphragm velocity may be determined by first establishing an 
equation of motion for the port fluid velocity.   From conservation of momentum, or forces, a linear 
equation may be derived as so: 

( ) pcprmppp SspsusZcsm )()()( =++  (2.19) 

The terms in  (2.19) have the following names: 

mp Mass of the air in the port 
cp Flow resistance of the port 
Zrmp(s) Acoustical impedance seen by the port on the cabinet exterior  
up(s)  Port fluid velocity; positive velocity indicates flow out of the cabinet 
pc(s) acoustic pressure inside the cabinet 
Sp Area of the port. 

An analytical solution was developed for the radiation impedance of two pistons mounted in an 
infinite baffle (Klapman, 1940).  As the result does not differ by more than 10% at low k·a from the 
single-piston case, and as the impedance contributes less than 10% to the total lumped mass, this effect 
is considered negligible in most studies.  Therefore the acoustical impedance seen by the port on the 
cabinet’s exterior Zrmp(s) may, therefore, be incorporated into proper definition of mp and cp, i.e. by 
applying the appropriate ‘end correction.’  It is assumed in the following that this is the case, and thus 
the Zrmp(s) term is not used explicitly.    
 
The acoustic pressure inside of the cavity is determined by motion of the diaphragm and fluid flow in 
the port according to   
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The ratio of vent fluid velocity to diaphragm velocity is found by combining Eqs. (2.19) and (2.20), . 
 
 
which, after some rearrangement, may be expressed as so:  
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The mechanical equivalent radiation impedance on the rear side of the diaphragm is defined as 
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This can be expressed in terms of the physical constants of the system by replacing pc(s) with the RHS 
of Eq, (2.20) and then using (2.21) to express up(s) in terms of ud(s).  Doing this and rearranging terms 
produces: 
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2.1.5. Acoustic radiation 
The simplest model for acoustic radiation is 
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This model is valid if the shortest wavelength of sound considered is longer than any dimension of the 
loudspeaker.  The expression in (2.24) is simply the radiation from a point monopole source in free 
space, as discussed in elementary acoustics (Pierce, 1994).  A feature of monopole radiation important 
to loudspeaker design is that the acoustic pressure is directly proportional without frequency 
dependence to the volume acceleration of the source.  Consequently, in order to produce a frequency-
independent acoustic pressure field, the loudspeaker should produce a constant volume acceleration 
with respect to input voltage. 
 
If the loudspeaker is placed in a baffle, in the low k·a region the following will apply:  
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This radiation conditions is the most commonly used in the loudspeaker industry.  However, for small 
products using loudspeakers, e.g. a mobile phone, the 4π (full space) condition is more accurate. 
 
More general models of radiation can be obtained using simulations from boundary element models.  
This permits calculation of the radiated pressure from an arbitrarily shaped object, with an arbitrary. 
vibration distribution.  As the focus of this thesis is on details of the mechanical construction of the 
loudspeaker, such methods are not considered in this thesis. 
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2.1.6. Linear frequency response 
It is possible to predict the linear frequency response by combining Laplace domain representations of 
the voltage equation, (2.1), and the force equation,  (2.4).  As most loudspeaker systems are driven by 
low-output impedance, constant output voltage amplifiers, the loudspeaker’s response is defined by 
the frequency response function referenced to the voice-coil voltage, vc(s).  The first step in 
developing this transfer function is to combine the transduction equation, (2.12), with the general force 
equation, (2.13).  This provides this expression for the current in terms of the velocity: 
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Substituting this into the voltage equation (2.1) and solving for the ratio )()( svsu cd provides: 
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Recall that Zm(s) is the sum of the internal mechanical and acoustical load impedances.  Thus  (2.27) 
describes the velocity to voltage ratio including the effects of acoustical loading.   
 
From (2.24), the monopole free-field acoustic radiation depends directly on the diaphragm velocity.  
Therefore for the case of a loudspeaker mounted in a closed box, at low k·a numbers, the acoustic 
pressure may be determined by combining Eqs. (2.27) and (2.24) to give the ratio of pressure to input 
voltage 
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Further characterisation of this formula is given in §2.1.7 below.  
 
The total electrical impedance is a function that will be referred to many times in this thesis. Its 
Laplace-domain transfer function may be determined in a similar manner to the pressure response, 
above.  By first combining the basic definition of mechanical impedance and the relationship between 
current and force given in (2.12), the velocity may be written in terms of the current according to  
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Substituting this into the voltage equation and solving for the ratio )()( sisv cc provides  
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2.1.7. Response prediction of loudspeaker mounted in a sealed cabinet 
Equation (2.28) describes the frequency response function of pressure / voltage in terms of the general 
electrical, mechanical, and acoustic radiation impedances of a given loudspeaker and the enclosure in 
which it is mounted.  It does not, however, directly answer the question of how a loudspeaker and its 
cabinet should be designed in order to provide a certain desired response.  General answers to the 
question of ‘how to design a loudspeaker to achieve some desired response’ were the subject a paper 
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by Thiele (1961) for vented-box loudspeakers,1 along with a different presentation and extension of 
Thiele’s work in a series of papers by Small (1971, 1972, Jan. 1973, Jun. 1973, Jul. 1973, Sep. 1973, 
and Oct. 1973). 
 
It may be shown that if the loudspeaker is mounted in a sealed enclosure as per Figure 2.7, given 
certain assumptions, the transfer function has the form of a second-order high-pass filter.  There are 
many theorems and laws for filter design that can be used to analyse the loudspeaker’s response.  First, 
however, it is necessary to re-write the expression of  (2.28) into the same form as general high-pass 
filters are expressed.  The papers by Thiele and Small mentioned above give connections between 
physical parameters of a loudspeaker (with its enclosure) and the parameters of high-pass filters.  With 
this connection, the parameters of the high pass filter (defining the shape of the frequency response) 
can be directly known from the physical dimensions and manufacturing specifications of the 
loudspeaker.2   
 
Following a method used by Thiele (1961) for vented-box loudspeakers, it was shown by Small (1971) 
that the response of a loudspeaker mounted in a closed-box, can be represented by this second-order 
high-pass filter: 
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where  
s = Laplace variable 
S0 = system gain 
Q = Q-factor 
Tc = System time constant cω=1 cfπ= 21 , where fc is the system cut-off frequency. 

 
The first step to write the voltage to pressure transfer function of  (2.28) into in this form is to 
parameterise the general electrical, mechanical, and acoustic radiation impedances (Zeb, Zmo, and Zrm 

respectively), as so: 
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It is helpful to define a single expression for the total mechanical impedance, equal to the sum of the 
diaphragm and mechanical-equivalent acoustical impedance: 
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Here, a total mass and stiffness have been defined as 
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1 The description of the acoustic response of a vented-box loudspeaker as a fourth-order high-pass filter was first 

given by Novak (1959).  However, Thiele’s 1961 paper was the first to fully apply existing tools for active 
analogue filter design to vented box design.   

2 Although such a connection may not seem novel from a scientific point of view, Thiele and Small’s work 
proved significantly useful to the loudspeaker engineering community.  One indication of this is that the basic 
set of performance parameters for an electrodynamic loudspeaker, in isolation from its enclosure, are 
commonly referred to as the ‘Thiele-Small parameters.’ 
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In addition to the parameterisations of (2.32), it is necessary to assume that the effect of internal 
electrical inductance is insignificant, i.e. Leb = 0, so that Zeb ≅ Reb.   Notice that, as per the measurement 
of the microspeaker shown in Figure 2.5, the net contribution of the electrical inductance to the total 
blocked electrical impedance is less than 10% below 5000Hz, and thus this assumption is reasonably 
justified, particularly at frequencies below 5000Hz.  
 
If the acoustic pressure is considered at one (1) metre from the loudspeaker in a fully free (4π 
steradian) acoustic field, ignoring the phase lag caused be the wave propagation over the one meter 
distance, the acoustic propagation term can be simplified from reikr π4 to 1/4π.   

Acoustic response 
With the above simplifications and by substituting Eqs. (2.32) and (2.33) into (2.28), it is possible to 
express the voltage to pressure transfer function in the second-order low-pass filter form of (2.31) as 
so: 
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This may be described by a gain factor and a generic second-order high-pass filter as so: 
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where 
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Electrical impedance 
The electrical impedance can be represented in a similarly compact form.  For this purpose, it is 
necessary to define two  different Q values.  Using notation from Small (1972), these are:  
 

Qes:  Electrical Q-factor; this is the Q-factor due to the effective damping provided by a constant 
output-voltage amplifier. 
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Qms:  The mechanical Q-factor; this is the Q-factor due to the damping provided by mechanical 
resistance and resistive acoustic radiation impedance.  
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where ct is the total damping as defined in (2.33).   
 

With these definitions, the general electrical impedance of (2.30) may be expressed as this second-
order narrow-bandpass filter: 
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The magnitude of the frequency response of the total electrical impedance as represented by the 
transfer function of (2.39) is plotted in Figure 2.10 for a typical set of values of ω0, Reb, Qtc, and Qms. 
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Figure 2.10: Plot of parameterised total electrical impedance, for a typical set of values of a microspeaker. 

2.1.8. Response prediction of a loudspeaker mounted in a vented-box enclosure 
The far-field acoustic pressure generated by a loudspeaker in a vented-box enclosure is caused by the 
sum of the volume velocity from the diaphragm and the port.  If monopole radiation in a fully free 
field is considered, the acoustic pressure at one (1) metre, ignoring propagation delay, will be given by 
the diaphragm and port velocities according to 
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Using the relation between port and diaphragm velocity given in (2.21), this may be re-written in 
terms of the diaphragm velocity alone as so 
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This expression may be written in terms of the input voltage vc(s) using the general impedance form of 
the relationship between diaphragm velocity ud(s) and input voltage of (2.27).  Separating out the 
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internal mechanical, front, and rear acoustical parts as per (2.14), the acoustic pressure may be written 
in terms of the input voltage as so  
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By using the same simplifications as for the closed box analysis presented in §2.1.7, it was shown by 
Novak (1959) that the above transfer function can be written as a fourth-order high pass filter.  This 
description was used to interesting effect by Thiele (1961), who brought the full weight of tools for 
active analogue filter design to the problem of design & analysis of loudspeakers in a ported cabinet.  
Thiele wrote a table of different response types based upon the different standard alignments for a 
fourth-order high pass filter, which gave a compact description of the possible frequency response of a 
ported loudspeaker in terms of its physical dimensions and manufacturing specifications. 
 
Specifically, to apply the theory presented by Thiele (1961), these simplifications are made: 
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Using these simplifications and substituting the expression for the rear radiation impedance presented 
in the LHS of (2.23) for Zrmr(s) produces: 
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2.2. Nonlinear models of loudspeakers 
Linear models are conceptual simplifications.  They are valid for a limited range of operation.  For the 
electrodynamic loudspeaker, the scope of range is mostly defined by the diaphragm-coil displacement.  
The range of applicability of the same model structure as that developed in §2.1 above may be 
extended by introducing displacement-dependence on several parameters of the model.   
 

2.2.1. Parametric nonuniformity and causes of nonlinearity  
Parametric nonuniformity and other causes of nonlinearity result in nonlinear distortion in the acoustic 
signal reproduced by a loudspeaker.  Nonlinear distortion reduces the quality of the sound reproduced 
by the loudspeaker.  This thesis does not aim to determine what degree of nonlinear distortion is 
acceptable.  Instead, it is assumed that present levels of nonlinear distortion, in existing products, are 
proper compromises between construction expense and sufficiently low distortion for market 
acceptability.   
 
Causes of nonlinearity in loudspeakers have been thoroughly researched, and are generally thought to 
be well-understood.   
 
Identification and modelling of nonlinear mechanisms has been an active academic subject for most of 
the last century.  The dominant mechanisms may be described as parametric nonuniformity, i.e. the 
variation of some linear parameter with excursion by some analytic description.  The most common 
form for description of parameter non-uniformity is a polynomial power-series expansion in xd, which 
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is used for most models of parameter non-uniformity in this thesis.  This description is particularly 
convenient for real-time computation, as it requires simple polynomial evaluations in an otherwise 
linear model.   
 
Different types of parametric nonuniformity and causes of nonlinearity are discussed in the following 
sub-sections.   

A. Magnetic field nonuniformity 
The magnetic field generated by the loudspeaker’s magnet system, i.e. part (7) shown in Figure 2.1 
and in Figure 2.2, will not be completely uniform over the region through which the coil will move.   
One may consider a displacement-dependent magnetic field B(xd), which describes the variation of the 
magnetic field along the axial direction of the coil’s movement.  From this, an effective transduction 
coefficient φ(x) may be calculated as so 
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where h is the height of the voice-coil.  
 
The transduction coefficient may be is approximated a power series expansion of order Nφ 
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A plot of a typical measurement of the nonuniformity in the transduction coefficient is shown in 
Figure 2.11.  The data shown in Figure 2.11 is for a 16mm diameter microspeaker of the basic type 
shown in Figure 2.1.   This data was obtained with a commercial instrument for determining the 
coefficients of the polynomial approximation to φ(xd), i.e. φk in (2.46).  A description of this 
commercial instrument is provided by Klippel GmbH (2001). 
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Figure 2.11:  Measured nonuniformity in the transduction coefficient versus diaphragm-coil displacement, i.e. 
φ(xd), for loudspeaker type shown in Figure 2.1.   
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The transduction coefficient φ(xd) is not well-represented by a finite Taylor series if it is evaluated 
outside of the range of x-values on which the coefficients were determined. This can be seen in the top 
frame of Figure 2.12.  This is particularly problematic during simulation of nonlinear behaviour, 
where it is interesting to simulate high diaphragm-coil displacement.  If the transduction coefficient is 
negative, it can result in unstable simulation results.  
 
A solution to this problem is to invert the transduction coefficient variation, and perform a polynomial 
fit on this.  Representing this as ψ(xd), i.e. 
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the actual transduction coefficient function can be recovered from 1/ψ(xd).  A plot of 1/ψ(xd) is shown 
in the lower frame of Figure 2.12.  This technique is used to ensure stable results in the simulations 
presented in §§5.2.1 - 5.2.2. 
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Figure 2.12: Polynomial fitting for force-factor (B•l factor) data; top frame shows how coefficients fit on 
direct data, when evaluated outside of range of direct data, can return a negative result.  Bottom frame shows 
how fitting coefficients on inverse data, and evaluating as inverse function does not produce this problem. 

B. Stiffness nonuniformity 
Nonuniformity in the suspension exhibits itself either as a smooth, memory-less function of 
displacement, as a hysteretic function, or, when the diaphragm-coil assembly contacts other parts of 
the loudspeaker, as a discontinuous function.  These three different types of stiffness nonuniformity 
are discussed separately below. 

Gradual (‘smooth’) variation in the suspension 
It is known that the stiffness presented by the suspension will not be uniform throughout the range of 
displacement.  Typically, the stiffness will increase with higher displacements.  This is known in 
mechanics as a ‘hardening spring.’   
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This effect was analysed in some detail by Olson (1944), illustrating what is now referred to as the 
‘jumping’ phenomenon.  This refers to sudden changes in the response amplitude as the frequency of a 
sinusoidal excitation is swept upwards or downwards around the resonance frequency.   Due to the 
fact that, with a hardening spring, the resonance frequency increases with increasing displacement, for 
a certain range of frequencies just above the small-signal resonance frequency, there will not be a 
unique response amplitude solution at higher levels.  As the frequency is changed past a certain critical 
point, the response amplitude will ‘jump’ from the amplitude of one stable response to another.   
 
The stiffness may be approximately described by a truncated power series, forming an order Nk–th 
order polynomial as so: 

∑
=

=
kN

n

n
dndd xkxk

0

)(  (2.48) 

A plot of the nonuniformity of the stiffness on a typical microspeaker is shown in Figure 2.13. 
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Figure 2.13: Measured nonuniformity in the suspension stiffness with respect to diaphragm-coil displacement, 
i.e. kd(xd), on a sample of the loudspeaker type shown in Figure 2.1. 

As can be seen in Figure 2.13, the stiffness variation does not appear as a ‘hardening spring,’ wherein 
the stiffness would increase with the absolute value of the displacement.  This ‘hardening spring’ 
phenomenon is the most common form of stiffness nonuniformity seen in typical loudspeakers.  
Instead, it is clear from Figure 2.13 that the suspension of the microspeaker produces a stiffness that 
increases with forward displacement and decreases with rearward displacement.  Stiffness 
nonuniformity of this shape is thought to be characteristic of the microspeaker with a suspension of the 
shape shown in Figure 2.1.  

Buckling  
Through various experiments and measurements made for this thesis, it was found that in some cases 
the suspension stiffness may have exhibit some buckling, producing strong hysteresis (backlash).  A 
measurement on a loudspeaker with such an effect is shown in Figure 2.14.  This kind of stiffness 
nonuniformity cannot be modelled with a function of the type in (2.48). A more complicated, memory-
dependent model would be needed.  As this type of stiffness is a manufacturing defect to be avoided 
by proper mechanical design, a model of this effect is not considered in this thesis.  
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hysteretic effect as diaphragm 
moves 0.2mm towards magnet

 
Figure 2.14: X-Y Voice-coil current–displacement plot for a microspeaker, showing effect of buckling in the 
suspension, at how it leads to ‘backlash’ in the displacement/current X-Y plot.  Displacement is measured with 
a laser displacement interferometer (fringe counter), in an otherwise similar arrangement to that shown in 
Appendix A. 

Suspension limit 
There is a physical limit to the distance that the diaphragm-coil assembly may move.  As the 
diaphragm moves forward, away from the magnet, the stiffness presented by the suspension will 
gradually increase, until the suspension is no longer flexing, but is instead under tension.   
 
As the diaphragm moves rearward, the coil and/or the diaphragm will at some point contact the 
magnet and/or frame.  At this point, the suspension stiffness kd becomes ‘infinite,’ in the sense that no 
matter how much force is applied to the coil, the diaphragm-coil assembly will not move any further.  
This effect is referred to be some as ‘bottoming-out’ of the suspension, by analogy to a similar effect 
occurring in automobile suspensions. 
 
The maximum displacement set by this suspension limit for the microspeakers investigated in this 
thesis is approximately 0.35mm peak.   
 
This limit to the suspension can be modelled by setting the suspension to be infinite at the limiting 
value.  The suspension is not modelled in this way in other parts of this thesis.  Particularly, it is not 
modelled in the context of compensation of nonlinear distortion.  Were this to be modelled, an attempt 
to compensate for the suspension limit would create an infinite gain in the compensator, which, to be 
sure, would be somewhat impractical. 

C. Inductance nonuniformity 
The electrical inductance Leb will vary with coil position.  As the coil moves forward, away from the 
magnet system, there will be less ferromagnetic material ‘seen’ by the magnetic field generated by the 
coil, producing a lower inductance.  An example of this type of variation is shown in Figure 2.15.  As 
can be seen in this figure, the inductace decreases with forward movement of the voice-coil, wherein 
there is less ferromagnetic material seen by the voice-coil. 
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Figure 2.15: Measured nonuniformity in the blocked electrical inductance with respect to diaphragm-coil 
displacement, i.e. Leb(xd), for the loudspeaker type shown in Figure 2.1. 

As shown in Figure 2.5, the blocked electrical inductance makes a negligible contribution to the total 
electrical impedance in the speech-frequency range for the microspeaker.  The variation of this 
inductance, though measurable, does not affect its overall performance at large signals.  The 
nonlinearity produced by inductance nonuniformity is, therefore, only considered in the discussion on 
theory of nonlinear simulation presented in §2.2.2, and not in other parts of this thesis. 

D. Mass nonuniformity 
It was shown by Olsen and Thorborg (1995) that the effective mass of the loudspeaker diaphragm can 
change with position.  It was found that the roll surround used in many loudspeakers produces a 
changing mass depending on whether the diaphragm is near its forward or rearward displacement 
extremity.  This produced an effective moving mass which changed by some ±20% from its value at 
the equilibrium (rest) position.  The variation of the mass with displacement was found to be well-
modelled by a first order polynomial expansion in xd. 
 
Over the limited range of displacements of which the microspeaker considered in this thesis is capable, 
it is assumed that the mass is uniform. 

E. Area nonuniformity 
In the same study by Olsen and Thorborg (1995) that discovered mass-variation, it was also found that 
the effective area changes with displacement.  This was found to be due to the same mechanism that 
caused the mass-variation, the changing behaviour of the surround.  As the surround (outer 
suspension) is extended rearward from equilibrium, it contributes more to the effective radiation area.  
As it is extended forward from equilibrium, it contributes less. Over the range of possible excursions, 
variations in the effective area were found to be on the order of ±12%. Similar to the mass variation, 
the area variation was found to be well-modelled by a first-order polynomial in xd. 
 
Over the limited range of displacements of which the microspeaker considered in this thesis is capable, 
it is assumed that the effective area is uniform. 
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F. Magnetic attraction force 
The magnetic attraction force as it appears in electrodynamic loudspeakers was first discussed by 
Cunningham (1949).  This effect is the result of the classical electrodynamic effect of the attractive 
force existing in a current-carrying wire for any ferromagnetic material in its vicinity.  For the case of 
an electrodynamic loudspeaker, the coil will exhibit this force for the material in the magnet and 
magnetic circuit.  It was noted by Cunningham that this force is related to the spatial derivative to the 
internal inductance of the coil, i.e. 
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This ‘solenoid’ effect is problematic in largely-overhung voice-coils, which will produce significant 
gradients on the electrical inductance Leb with respect to displacement of the coil.  It was noted by 
Cunningham that this effect is reduced if the ferromagnetic material in the magnet system is near or at 
magnetic saturation.   
 
This phenomenon introduces an additional forcing term to the force equation.  As the force varies with 
the product of the square of the current ic(t) and derivative of the inductance, it will render the 
resulting differential equation nonlinear. 
 
This effect is dependent upon nonuniformity in the electrical inductance.  As explained in part C, 
above, nonuniformity in the electrical inductance is not considered for the speakers considered in this 
thesis.  Thus the nonlinear mechanism of the magnetic attraction force is not considered in this thesis. 

G. Frequency modulation distortion  
Frequency modulation distortion results from the fact that the diaphragm will have a finite velocity as 
it vibrates.  This effect has seen considerable academic interest (Klipsch, 1968), (Butterweck, 1989).  
Simulations of the magnitude of nonlinear distortion produced by this effect show that it is several 
orders of magnitude below that created by nonuniformity in the transduction coefficient and 
suspension stiffness (Zóltogórski, 1993). 

2.2.2. Nonlinear simulation 
From this point forward, only models of parametric nonuniformity which operate as zero-memory 
nonlinear systems will be considered.  By ‘zero-memory,’ it is meant here that the model of 
nonlinearity depends only on instantaneous quantities of the system.  This is a deliberate choice, as it 
makes analysis of the resulting nonlinear system significantly more simple than if the models were to 
conclude some ‘memory,’ i.e. to depend on past quantities of the system.  Not all types of parametric 
nonuniformity can be modelled in the this way.  For example, the hysteretic stiffness shown in Figure 
2.14 above does depend on past values of the displacement.  This type of effect is not modelled in this 
thesis.  This is because the end purpose of the nonlinear modelling that follows is to form the basis of 
an electronic processor for compensation of nonlinearity.  It is judged that such memory-dependent 
parametric nonuniformity cannot be accurately modelled with practical controllers.  It is furthermore 
judged that these types of problems must be solved by proper mechanical design, as they generally can 
not – in practice – be compensated for electronically. 
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Introducing the parametric nonuniformity discussed above into the voltage equation of  (2.1) produces  
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The parametric nonuniformity may be introduced into the force equation in a similar manner.  Using  
(2.12) to substitute the current for the force as the forcing term, and adding the magnetic attraction 
(‘solenoid’) force term to the RHS, the force equation becomes:  
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Solution of these equations may be used to simulate the loudspeaker’s behaviour given appropriate 
descriptions of the parameter nonuniformity.  The equations are nonlinear in the displacement, xd(t), 
and therefore a general frequency-domain solution for the displacement in terms of the input voltage is 
not possible, as it is for the linear case presented in §2.1.6 above. 
 
The Volterra series is a natural method for developing a general solution to the nonlinear equations.  It 
theoretically permits precisely the same type of general solution for xd(s) in terms of the input vc(s) as 
is developed for the linear case above, in a quasi-frequency domain manner.  Its application to the 
loudspeaker was first presented by Kaizer (1987).  The Volterra series becomes highly complicated 
when higher than second-order nonlinearity (parameters which depend on a power of xd greater than 2) 
are considered.  Therefore although it has been demonstrated in literature that this method can be used 
to measure and compensate for loudspeaker nonlinearities with some success, it makes a poor general 
method for nonlinear analysis.   
 
A more simple strategy for solving nonlinear differential equations than the Volterra series is 
Harmonic Balance.  In this method, the system is analysed in the frequency domain, for a finite 
number of excitation frequencies.  The frequency components generated in other terms in the system 
are iteratively calculated until the resulting error is reduced to some desired value.  This method was 
proven effective by Klippel (June 1992) for single and multi-frequency excitation, for predicting 
harmonic and intermodulation distortion, as well as the ‘jumping effects’ found by Olson, described in 
§2.2.1, part B above.  However, it is not suitable for computation on more complex waveforms or long 
arbitrary time series, whose frequency-domain description would require large numbers of frequency 
components in the input signal.   
 
NARMAX modelling (Nonlinear auto-regressive moving-average with exogenous input) has been 
proposed as a method for identification of nonlinearities (Jang and Kim, 1994), and for nonlinear 
simulation (Potirakis et al., 1999).  However, it is not suitable for developing an input-output 
characterisation from such nonlinear differential equations as Eqs. (2.50) and (2.51), without first 
deriving sample input-output time series by some other method.  This is because there has yet to be 
any method established for determining coefficients of a NARMAX model from those of a nonlinear 
differential equation.   All published work on NARMAX modelling to date is based on adaptation of the 
model to measured input-output time series data, and not determination from physical constants of a 
system.  Thus NARMAX modelling does not permit simulation in the sense of the prediction of the 
performance of system based on its design characteristics without first building the system.   
Furthermore, it does not permit the development of a connection between the amount of nonlinearity 
of a loudspeaker to its design characteristics.  The main utility in the NARMAX model is the ability to 
predict the nonlinear response of the loudspeaker for some arbitrary signal.   
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A common method for solving differential equations is numerical integration.  Numerical integration 
was used for auralisation of nonlinearity by Christensen and Olsen (1996).   It has also been used to 
predict harmonic and intermodulation distortion.  This method is used in chapter 5, below, to analyse 
the changes in transduction coefficient nonuniformity, φ(xd), caused by shortening of the voice-coil 
height.  
 

2.3.  Discrete-time physical modelling 
In the loudspeaker models developed in §§2.1-2.2, all time-dependent quantities were defined with 
respect to continuous-time.  In contrast, textbooks and other literature on modern digital signal 
processing theory and applications invariably consider controllers and processors operating in 
discrete-time.  Practical implementation of active control can only be implemented by a digital 
processor.1  The adaptive controller will need a model of the loudspeaker in order to perform system 
identification, for updating the feedforward part of the controller.  This is not straightforward, as the 
basic parametric descriptions of systems in continuous-time is not the same as that in discrete-time.  
This is a basic problem for discrete-time control systems dealing with real-world plants, and will be 
considered at a fundamental level in this section. 
 
This problem may be described succinctly as follows.  Real, physical systems, are generally described 
by systems of differential equations, defined by two coefficient vectors c and d.  These may be 
represented, along with the respective Laplace-domain transfer-function, as so: 
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Controllers handle systems with digital processing operating in discrete-time, defined by two 
coefficient vectors a and b.  These generally describe systems in terms of difference equations, 
conveniently analysed by their z-domain transfer function:  
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 (2.53) 

Methods do exist for determining a set discrete-time coefficients a and b, directly from c and d, giving 
a discrete-time system with approximately the same frequency response as the continuous-time system 
described by c and d.  However, these typically require detailed calculation, and suffer from numerical 
sensitivity complications, as is described below.  From elementary discrete-time signal processing 
theory (e.g. Oppenheim and Schafer, 1989), there are two formal methods for determining the 
coefficient vectors c and d from b and a: the bilinear transformation, and impulse invariance. 

                                                      
1 It is theoretically possible to implement such controllers with analogue processors.  However, they are 

generally subject to drift, are difficult to program, and cannot be easily controlled by microcontroller (as would 
be needed for an actual commercial product).  For these reasons, analogue implementation of an adaptive 
feedforward controller for a loudspeaker is considered impractical. 
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The bilinear transform determines a z-domain transfer function by the substitution  
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It can be shown that the discrete-time coefficient vectors a and b resulting from the bilinear 
transformation are determined by matrix multiplication between the continuous-time coefficients c and 
d and matrices P and Q as so 
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where the columns of P and Q are polynomial coefficients resulting from, respectively,  the M th 
 and 

N th  binomial expansion of the products between (1 – z –1) and (1 + z –1).  The coefficient vectors c and 
d from the differential equation contain the physical information of the plant, and are thus those 
parameters of interest to the feedforward controller.  They may be determined from the discrete-time 
coefficients a and b by multiplication by P-1 and Q-1 respectively.  Although the matrices P and Q are 
generally invertible, they are fully populated, making this multiplication somewhat complicated – 
complicated to the extent that it would be unsuitable for real-time processing.  
 
The method of impulse invariance performs a discrete-time sampling of the impulse response of the 
continuous-time system.  The use of this method thus requires conversion of the polynomial ratio of 
(2.52) in s to a partial fraction expansion, from which the impulse response in continuous-time may be 
obtained by inverse Laplace transform.  A discrete sampling of this continuous-time impulse response 
may be z-transformed, producing  
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where An are the numerator coefficients of the partial fraction expansion, and λn are the roots of the 
continuous-time denominator polynomial of (2.52).  The expression in (2.56) may be expanded into 
the standard polynomial ratio in z-1 of (2.53), resulting in a set a of coefficients suitable for a digital 
filter.  The net effect of the impulse invariance method is to map the poles from the s-plane to the z-
plane according to 

nsT
n e λ=π  (2.57) 

where πn is the nth
 pole in the z-plane, and Ts is the sampling period.   The sampling of this impulse 

response produces familiar aliasing effects.  These aliasing effects can usually be compensated for by 
matching the overall-gain between the continuous- and discrete-time frequency response functions at 
some frequency for which the continuous-time frequency response function is simply defined.  
However, perhaps more problematic, is that this method requires that the roots of the continuous-time 
denominator polynomial be calculated.  Such a calculation is difficult, and can fail due to finite-
precision effects even for floating-point computation. Thus this method, in its formal form, is also 
considered unsuitable for development of a discrete-time model. 
 
Due to these problems, specific discrete-time models of the loudspeaker are developed below.  The 
exponential pole-mapping of (2.57) is used as a starting point, with slight modifications the ensure the 
frequency response of the discrete-time models matches that of the continuous-time.  Particular effort 
has been made to ensure that the parameters of these models have direct physical interpretation. 



58 Chapter 2 
 

 

2.3.1. FIR filter for electrical admittance 
As discussed in the introduction, an adaptive feedforward controller requires an adaptive filter for 
system identification.  The most well known and reliable methods for adaptive filtering use FIR filters 
for plant models.  This is due to the fact that FIR filters are inherently stable, and that their error 
surfaces for any system are unimodal, without local minima.  For this reason, an FIR filter describing 
the electrical admittance of the loudspeaker is investigated.  The electrical admittance of the 
loudspeaker is considered because, as explained in the introduction, the electrical current is the only 
practical feedback signal available from the loudspeaker.   
 
The suitability of an FIR filter for identifying a loudspeaker’s parameters by its electrical impedance 
may be determined by analysis of the impulse response of the electrical admittance.   As per the 
formal method of impulse invariance described above, an analytical expression for the impulse 
response may be obtained by inverse Laplace transform of the Laplace-domain expression for the 
transfer function.  To consider how a digital FIR filter would react to the electrical admittance of a 
loudspeaker, distinct points of the resulting continuous-time impulse response are analysed.  This is 
somewhat different to the formal impulse invariance method, wherein the individual terms of the 
analytical expression for the impulse response are converted to the z-domain (using special properties 
of the z-transform), and re-combined to the single ratio of powers in z-1 of (2.53).  This method is not 
used her , as it would result in an IIR filter, whereas the original stated purpose here was to develop an 
FIR filter. 
 
For the simplest case of a loudspeaker mounted in a closed box, this impulse response may be 
determined by inverse Laplace transform of the multiplicative inverse of the s-domain expression for 
the total electrical impedance given in (2.39).  This may be expressed as so:  
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where Ym·e(s) is the mechanical mobility as described by (2.6) in §2.1.2, with an important difference.  
The term Ym·e(s) in (2.58) includes the effective damping produced by the ‘back EMF.’  In other words, 
the damping in Ym·e(s) will be given by the sum of the mechanical damping ct and the ‘electrical 
damping, ebR2

0φ .  A plot of the magnitude and phase of the frequency response of (2.58) is shown in 
Figure 2.16. 
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Figure 2.16: Magnitude and phase of the electrical admittance transfer function in (2.58) for a typical set 
parameters. 
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It may be shown that the inverse Laplace transform of  (2.58) is given by  
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The discrete-time representation of (2.59) is not given simply by the periodic sampling of the 
continuous-time time function as is done in the impulse invariance method described above, or for that 
matter in digital data acquisition.  Instead, it is necessary to integrate over each sample period n, i.e. 
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In this way the delta function in (2.59), δ(t) / Reb, becomes an impulse of height 1 / Reb.  A plot of this 
discrete-time impulse response for a typical set of loudspeaker parameters is shown in Figure 2.17. 
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Figure 2.17: Impulse response of (2.59) for same set of parameters as Figure 2.16.  Points on the impulse 
response denote locations of FIR filter taps as would occur given Fs = 8kHz.  The x-axis tick marks are shown 
at intervals of T0,  which is  1/f0, where f0 is the resonance frequency. 

 
An adaptive FIR filter operating on a loudspeaker’s electrical admittance will identify discrete points of  
(2.59), as shown in Figure 2.17.  From sufficient number of these points, the parameters may be 
identified by minimising the error between the values of these points and the formula of (2.59).   
 
This method is considered too computationally expensive.  This is because two computationally 
intense steps must be performed: 
• Adaptation of sufficient length FIR filter 
• Determination of parameters from identified FIR coefficients. 
 
Figure 2.17 shows one of the best-case situations with respect to number of taps needed in the FIR 
filter.  In this case, the ratio of the resonance frequency f0 to the sampling frequency Fs is about 0.1.  
Here it is clear that at least 15 taps would be needed in order to make an accurate estimate of the 
resonance frequency and damping factor.   
 



60 Chapter 2 
 

 

Perhaps even more difficult, however, is the final determination of the parameters ω0, ζ and φ0 from 
the FIR filter coefficients.  The error function resulting between these coefficients and (2.59) would be 
highly nonlinear in the parameters ω0, ζ and φ0, and would thus have to be determined by an iterative 
method (e.g. Newton’s method).  This type of meta-calculation is considered, for the present work, 
unsuitable for real-time processing. 

2.3.2. IIR filter for receptance of an SDOF system 
Knudsen et al. (1989) presented a formula for a second-order IIR filter giving the frequency response 
of a second-order mechanical system, and used this as a model of a loudspeaker’s mechanical 
dynamics.  In their paper, it is explained that the parameters of the IIR filter are related to the physical 
parameters of the mechanical system by simple expressions not presented in the paper.  As these 
expressions will be used in several parts of this thesis in some detail, their derivation is presented here.   
 
The s-domain transfer function for the mechanical receptance of a single mass-spring-damper (SDOF) 
system, according to elementary mechanical dynamics (e.g. Newland, 1989), is given by 
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In a method similar to that in §2.1.2, above, this may be written in factored, form,  
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The terms λ1 and λ2 are the poles of the transfer function, as they are the roots of the denominator  
polynomial in  (2.61).  As per impulse invariance described above, the basic form of a discrete-time 
transfer function may be obtained by mapping the poles of (2.62) to the z-plane, according to 
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where σx is the characteristic sensitivity in z-domain, which shall be defined below.  This z-domain 
representation may be written in standard form as  
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where  
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In this way the coefficients of the discrete-time transfer function are determined from those of the 
continuous-time version according to:  
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The z-domain characteristic sensitivity, σx, is determined by matching at a certain frequency the value 
of the z-domain frequency response in (2.63) to the s-domain frequency response in (2.61).  The 
characteristic frequency is one for which the transfer function is most simply defined.  For the 
mechanical receptance, this occurs at  f = 0  (i.e. 0 Hz), where Xm(s) in (2.61) is 1/kt. With the 
foregoing, σx is  

t
x k

aa 211 ++=σ . (2.67)  

 
The frequency response and pole-zero map of this discrete-time model of the receptance is shown in 
Figure 2.18, for three different resonance frequencies, and for three different damping values.  The 
frequency response of the discrete-time model of receptance closely matches the continuous-time 
response in both magnitude and phase.  The only difference occurs at high frequencies, close to the 
Nyquist frequency.  At these high frequencies, the discrete-time model has a higher magnitude 
response than the continuous-time response.  Due to the low-pass nature of the receptance function, it 
is assumed that the total percentage error of a broad-band signal filtered by this discrete-time model of 
the receptance would be minimal.  If better accuracy were needed up the Nyquist frequency, this could 
be achieved by increasing the complexity of the filter, i.e. by increasing its order.  
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Figure 2.18, [left]: Frequency response comparison between continuous-time (broken) and discrete-time 
(solid) representation of the receptance; [right]: pole-zero map in z-plane of receptance model. 

 
The continuous-time resonance frequency ω0 and the damping ratio ζ can be determined from a1 and 
a2, given certain limits on the range of values of a1 and a2.   In the s-plane, the damped natural 
frequency is the distance of the poles, λ1 and λ 2 in (2.62), along the Imaginary axis.  In other words, 
the damped natural frequency is given by the imaginary part of the poles, λ 1 and λ 2.  By the analogy 
that the imaginary axis of the s-plane is wrapped around the unit circle of the z-plane, the same 
damped natural frequency, normalised to the sampling frequency Fs, in z-domain will be given by the 
angle of the pole around the unit circle of the z-plane.   Therefore the damped natural frequency is 
given by  
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where π1 is the value of the pole in the z-plane.  The real and imaginary parts of the pole π1 are given 
by relating the factored from of (2.64) to its polar form in (2.63), resulting in  
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A clue to finding the damping ratio ζ from a1 and a2 lies in recalling that it is related to the pole’s 
distance to the imaginary axis in the s-plane, which in the z-plane translates to its distance to the unit 
circle.  This distance is given by ( )21 a− .  Given the definitions of a2 in  (2.66), the square-root term 
is  

ζω−= sea2 . (2.70) 

Therefore given the condition a2 > 0 we have 
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Inspection of Eqs. (2.68) and (2.71) shows the s-plane pole can be reconstructed from a1 and a2 as so 
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Recalling that the undamped natural frequency can be determined from the magnitude of the 
continuous-time eigenvalue, i.e. 10 λ=ω , the undamped natural frequency may be determined from 
a1 and a2 as so 
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The damping ratio may be obtained from the above result and (2.71), giving: 
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2.3.3. IIR filter for mobility of an SDOF system 
As discussed in §2.1.2, the continuous-time transfer function of the mechanical mobility of an SDOF 
system is given in s-domain by  
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A discrete-time approximation to the continuous-time description by using the same process as used 
for the mechanical receptance described in §2.3.2.   
 
Thus we have 
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where a1 and a2 are as defined in (2.65).  The reference sensitivity σu is defined by matching the 
overall value of the discrete-time frequency response function to that of the continuous-time frequency 
response function.  The continuous-time frequency response function for the mechanical mobility is 
most simply defined at f = ω0, where Ym(s) = 1/ct. Therefore the σ0 is defined by matching the two 
frequency response functions at this frequency, providing 
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The frequency response and pole-zero map of this discrete-time model of the mobility is shown in 
Figure 2.19.  The response of the discrete-time model of mobility closely matches the continuous-time 
response in both magnitude and phase.  Like the receptance function, the only difference occurs at 
high frequencies, close to the Nyquist frequency.  Here, the discrete-time model has a lower  
magnitude response than the continuous-time response.  The agreement between these two is 
considered acceptable for the present application.  
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Figure 2.19 (a) – (c): Frequency response comparison between continuous-time (broken) and discrete-time 
(solid) representation of the mobility; [right]: pole-zero map in z-plane of mobility model. 

 
The reference sensitivity σu can be defined in terms of a1 and a2 if the total mass mt is fixed.   By using 
the substitution tt mc 02ζω= we have  
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The terms ζ and ωs may be determined from a1 and a2 as described in §2.3.2 above.  
 
For real-time, real-valued processing, the definition of σu in (2.78) is too complicated.  It has been 
found that σu depends only on the term a2.  Furthermore, it has been found that, over the most 
interesting range of values of a2, σu may be determined approximately by  a polynomial approximation 
as so 
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where nup ·σ is the nth
 coefficient of a polynomial approximation to the function of σ0 in terms of a2.  

As shown in Figure 2.20, a third-order polynomial approximation (N =3) provides a good compromise 
between accuracy and complexity.  An example of the accuracy of this polynomial fit is shown in 
Figure 2.20.  Although there is significant deviation for a2 below 0.4, only the range of a2 from 0.6 to 
1.0 is of interested for the type of loudspeaker of interest in this thesis.  This can be seen clearly in 
Figure 4.9, in the discussion on the ‘tolerance quadrilateral,’ in §4.1.5. 
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Figure 2.20: Reference sensitivity, σu vs. a2; actual value (broken) vs. 3rd-order polynomial approximation 
(solid).  Only the range of a2 from 0.6 to 1.0 is of interest, and thus the deviation below 0.4 is not of concern. 

 

2.3.4. Nonlinear discrete-time loudspeaker model 
A linear model for the loudspeaker can be developed in discrete-time in the same manner as it is for 
the mechanical receptance and mobility in the preceding two sections.  This is possible because, for 
the case of the loudspeaker mounted in a closed box, the mechanical dynamics of the system have a 
single degree of freedom.  Accurate representation of the frequency response of single-degree-of-
freedom mechanical dynamics is possible in discrete-time using the IIR filters for receptance and 
mobility described in §2.3.2 and 2.3.3, respectively, above.  As mentioned above, Knudsen at al. 
(1989) used this discrete-time representation for parameter determination by digital system 
identification.  This linear representation is used here.  The linear representation is combined with 
nonlinear components, to produce a discrete-time nonlinear model.  Using a technique developed by 
Klippel (1992), all nonlinear components are described by zero-memory systems.  The key advantage 
of this method developed by Klippel is that the linear and nonlinear components are kept separate.   
 
Only the dominant causes of nonlinearity are included in the nonlinear model presented here.  
Specifically, these are nonuniformity in the transduction coefficient φ(xd) and suspension stiffness 
k(xd) .   
 
In §2.1.2, the mechanical dynamics of the loudspeaker are presented in terms of the mechanical 
mobility of an SDOF system.  One can equally consider the mechanical receptance, wherein the 
displacement is considered as the output (instead of the velocity, for the mobility). Beginning with the 
linear discrete-time filter for the receptance derived in §2.3.2 above, the diaphragm displacement is 
given in terms of the force applied on the coil by the following difference equation: 

]2[]1[]1[][ 21 −−−−−σ= nxanxanfnx ddcxd  (2.80) 

The force on the voice-coil fc[n] may be calculated from the voice-coil current by  

( ) ( ) ][][][][][ 1 nxnxkninxnf ddcdc −φ=  (2.81) 
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where k1(xd[n]) is the variation of the suspension stiffness with displacement, excluding its value at 
equilibrium (kd).  Thus, if we consider the stiffness represented by the  polynomial expansion of (2.48) 
in §2.2.1 part B, k1(xd[n]) is given by  

( ) ∑
=

=
kN

l

l
dld nxknxk

1
1 ][][  (2.82) 

By dropping the electrical inductance term, the voice-coil current may be determined using the voltage 
equation of (2.50) as so1 

( )[ ]][][][1][ nunxnv
R

ni ddc
eb

c φ−=  (2.83) 

The velocity ud[n]  appearing in (2.83) may be determined by differentiating the displacement signal.  
This differentiation may be represented by the following difference equation 

]1[]1[][
][][][

1·1·0· −−−+=
∗=

nuanxbnxb
nxnhnu

ddtddtddt

ddtd  (2.84) 

In principle values of the filter coefficients in (2.84) may be taken from the bilinear transform, 
discussed in the introduction to this sub-section, above.  This will, however, lead to an unstable filter, 
and thus it is necessary to use a slightly modified value of adt·1.  This is discussed in more detail below.  
 
An explicit difference equation for calculating the displacement from the input voltage may be derived 
by combining (2.80) - (2.84), as so: 
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eb

dxd (2.85) 

A diagram showing the flow of processing of (2.85) is shown in Figure 2.21.  An extremely important 
feature of (2.85) is that it is an explicit equation for predicting the displacement xd[n] from the input 
voltage vc[n], incorporating nonlinear models of the transduction coefficient and suspension stiffness.  
This is to say that only delayed samples of xd[n] appear in the RHS of this difference equation.  
Furthermore, the input signal, the voltage vc[n] also appears only as a delayed sample in the RHS. 
Equation (2.85) may, therefore, be seen as a one-step predictor for the diaphragm displacement from 
the input voltage.  This important feature will be exploited for the development of a method for 
compensating nonlinear distortion produced by nonuniformity of the transduction coefficient and 
suspension stiffness, presented in §3.3.7. 

 

                                                      
1 Although (2.50) is expressed in continuous-time, it contains no differential or other time-dependent operators, 

and may, therefore, be directly converted to discrete-time. 
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Figure 2.21: Flow diagram for the nonlinear prediction of displacement according to (2.85). 

 
One problem with (2.85) is that it is inherently unstable, due to the nature of the approximation of 
differentiation made by the bilinear transformation used to derive the velocity signal by ][][ nxnh ddt ∗ .  
This velocity signal, when fed back to the input, leads to an instability.  This can be seen in the z-
domain transfer function of (2.85) valid for the small-signal (linear) case.  This z-domain transfer 
function is given by  
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 (2.86) 

and a pole-zero plot for a typical set of parameters and for adt = 1 is shown in Figure 2.22.  As can be 
seen on the left-hand side of the pole-zero plot in Figure 2.22, there is a pole (indicated by an ‘x’) 
outside of the unit circle – the basic characteristic for instability in an IIR filter.  This problem will lead 
to high-frequency oscillation, rendering the filter useless.  The problem can be corrected by reducing 
the value of adt to less than unity (<1.)  The pole-zero and frequency response of the same formula but 
with adt  = 0.85 are shown in Figure 2.23.  Here, it is shown that reducing adt in this way moves the 
pole inside the unit circle, thereby insuring stability, without significantly affecting the magnitude or 
phase response of the filter in the pass-band. 
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Figure 2.22: Linear analysis of Eq. (2.85), for adt·1=1; left: frequency response, magnitude (upper) and phase 
(lower); right: poles and zeros in z-plane. Notice pole (indicated by an ‘×’) just outside of the unit circle on the 
left-side of the plane. 
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Figure 2.23: Linear analysis of Eq. (2.85), for adt·1=0.85; left: frequency response, magnitude (upper) and phase 
(lower); right: poles and zeros in z-plane. 
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2.4. Parametric uncertainty 
The parameters of a loudspeaker cannot be know a priori from its design and manufacturing 
specifications.  Parameters of any given loudspeaker will vary from one unit to another from the same 
production line due to manufacturing tolerances.  Furthermore, the parameters will vary with time due 
to ageing, and with temperature variations. 
 
Studies on the parametric variations of loudspeakers due to ambient temperature variations have been 
made by Krump (1997) and Hutt (May 2002).  Both found the temperature variation to induce 
significant changes in the loudspeaker, with the strongest variations found in the suspension stiffness 
(kd) and damping (cd).  A small variation in the transduction coefficient (φ0) is also found.  Significant 
variation on the mass md was found by Krump, though not by Hutt.  It was suggested by Hutt (June, 
2002) that variation in the mass md  found by Krump was the result of temperature-induced variations 
in the suspension, leading to mass non-uniformity with excursion, as discussed in §2.2.1, part D, 
above.   It is thus presumed that the variations in mass found by Krump were a ‘large-signal’ 
(nonlinear) effect, and not due to temperature-variation-induced changes in the small-signal moving 
mass.  The results of these studies are summarised in Table 2.1, with a key difference for the 
suspension stiffness of the microspeaker, discussed below.  
 
 

Parameter Symbol Temperature Variation 
coefficient Manufacturing tolerance 

DC-resistance Reb 0.004·Reb·0°C 
(a) ±10% (b) 

Suspension damping cd -0.05 (c) ±10%(b) 

Suspension stiffness kd (none)(d) ±30%(b) 

Transduction coefficient φ0 -0.005(e) n/a 

Table 2.1: Known parametric uncertainties due to temperature variation and manufacturing tolerances. 

 
The studies by Krump and Hutt were made on more traditional low-frequency loudspeakers, more 
broadly akin to that shown in Figure 2.2 than the microspeaker.  With respect to temperature-
dependence of the stiffness, the microspeaker has an important difference to the typical loudspeaker.  
Specifically, the materials which make up the outer surround and inner spider suspensions are 
typically made of soft rubber and woven fabric, respectively.  These are materials whose bulk modulii 
are known to have strong temperature-dependence.  The microspeaker, by contrast nearly universally 
uses polycarbonate plastic for its suspension (part (3) of Figure 2.1.)   There is no dependence of the 
Young’s modulus (and thus suspension stiffness) below 120 °C for polycarbonate plastic, as per Fig. 
41 of Nashif and Lewis (1991).  Above 120°C, various materials in the microspeaker, such as glues, 
insulators, and adhesives, begin to break down, causing irreparable damage.  It is, therefore, 
considered that this microspeaker will not be used above 120°C.  For this reason the temperature 
dependence of the suspension stiffness above this temperature is not considered.   
 

                                                      
(a) Handbook of Chemistry and Physics, 36th Edition, Chemical Rubber Publishing Co. 
(b) Philips Loudspeaker Systems Telecom Vienna, datasheets 590-N for WD 005XX-series microspeakers. 
(c) Krump (1997) 
(d) For polycarbonate plastic suspension material. 
(e) Krump (1997) 
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3. Theory of active control of loudspeakers 
This chapter presents theory of systems for active control of loudspeakers.  Active control is 
considered in the context of three possible architectures, feedback, feedforward, and adaptive 
feedforward, as they were presented in the introduction. 
 
Several different feedback systems are discussed.  Current feedback and negative output impedance 
amplifiers are first discussed, and a historical view of their development is given.  ‘Motional feedback’ 
systems for active control, wherein a measured vibration signal is used for feedback, are then 
reviewed.  Implementation problems of these feedback systems are discussed.   
 
Feedforward processors are presented at a general level.  Both linear and nonlinear feedforward 
processing is considered.  
 
A special section on the theory of feedback linearisation is presented, along with a discussion on how 
this can be used to develop a nonlinear feedforward controller for a loudspeaker.   
 
The theory of feedback linearisation is applied to the nonlinear discrete time model developed in 
§2.3.4, above.   This leads to a simple algorithm for compensation of loudspeaker nonlinearities.   
 
As discussed in §2.4, certain properties of the loudspeaker cannot be known a priori, as they are 
subject to drift due to various factors.  It is for this reason necessary to make any feedforward 
controller adaptive, so as to be properly tuned to the loudspeaker.  This leads to the adaptive 
feedforward controller, mentioned in the introduction, and shown in Figure 1.4.  The adaptive part of 
this type of controller is performed using adaptive signal processing.  A brief review of adaptive signal 
processing theory, and a special discussion on adaptive recursive (IIR) filters, is therefore presented at 
the end of this chapter.   
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3.1. Feedback control for loudspeakers  
The improvement of loudspeakers by electrical means has been actively researched, more or less in 
parallel with research on the loudspeaker itself.  The historical and technical context of feed-forward 
equalisation and nonlinear compensation lies in theory and design of feedback controllers.  To this 
end, such well-known systems as negative output impedance amplifiers and motional feedback are 
reviewed.  

3.1.1. Constant-current output amplifiers 
A constant-current output amplifier offers a few advantages over the typical constant-voltage (low-
impedance) power amplifiers.  This can be seen, from a theoretical point of view, in a straightforward 
manner by inspection of the nonlinear differential equation pair of (2.50) and (2.51).  If the coil-
current ic(t) is held constant by the power amplifier, the nonlinear terms in the voltage equation (2.50) 
will not cause nonlinearity between the input and output (as they would for a constant-voltage 
amplifier).  Only nonlinear terms in the force equation, (2.51) will generate nonlinear distortion.  
Perhaps more significantly, any changes in the DC resistance Reb due to heating of the voice-coil 
(known as ‘power compression’) will not effect the resulting response.  These benefits were used as 
arguments in favour of using constant-current output amplifiers by Mills and Hawksford (1989).  
 
The primary complication in using a current-drive amplifier is that the electrical damping is lost, 
resulting in an excess Qtc.  Mills and Hawksford solved this problem by using some velocity feedback, 
wherein the velocity signal was obtained by a secondary winding on the voice-coil.  Transformer-like 
coupling between the main drive coil and this sensing coil was compensated for by an appropriate 
network.  The constant-current output amplifier does not seem to have received any interest since the 
work of Mills and Hawksford. 

3.1.2. Negative amplifier output impedance  
Before the negative feedback amplifier was formalised as a method for reduction of amplifier 
distortion, various feedback systems were proposed using some kind of interface to the loudspeaker.  
The first record of these is from Voigt (1925), whose patent describes the modified Wheatstone bridge 
shown in Figure 3.1.  The bridge is connected between the amplifier and loudspeaker, producing a 
signal proportional to the diaphragm velocity.  The velocity-analogous signal may be fed back into the 
input to the amplifier, thereby damping the loudspeaker’s resonance.  This was seen as advantageous, 
as mechanical damping of this resonance would result in an efficiency loss, and additional passive 
electrical damping would require a larger magnet resulting in a higher cost and weight.   
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Figure 3.1: Basic diagram of the impedance bridge for generating velocity feedback 
signal to create a negative output impedance amplifier.  

 
This principle has been written about by many authors over many years.  It was described by Yorke 
and McLachlan (1951) who called it an ‘Amplifier of Variable Output Impedance’, Clements (1951, 
1952) who called it ‘Positive Feedback’, Wentworth (1951) who called it ‘Inverse Feedback’, Childs 
(1952) who called it ‘Dynamic Negative Feedback’, and Wilkins (1956) who referred to it as ‘Control 
of Amplifier Source Resistance’.  Agreement seemed to have come upon the term ‘Negative Output 
Impedance’, used by Werner (1957), Werner and Carrell (1958), Steiger (1960), Thiele (1961)1, Ståhl 
(1981), and Normandin (1984).  However, this system was simply referred to as the ‘bridge-version’ 
of motional feedback in papers by de Boer (1961), Klaassen and de Koning (1968), and  Adams and 
Yorke (1976).  Furthermore, on the commercial market it was referred to as ‘damping control’, a 
popular feature in the 1960’s, seen now only in the idiosyncratic electric-guitar amplifier market.  
Perennial terminology confusion was ensured in papers by Holdaway (1963), who referred to this as 
‘Velocity Feedback,’ and Birt (1981), who demonstrated true creativity where one might have thought 
it exhausted with the name ‘Load-Adaptive Source Impedance.’  Little new was contributed to the 
subject by these latter authors, with the notable exception of Ståhl (1981) and Normandin (1984) who 
used it to interesting effect, which will be discussed below.   
 
It is also possible to derive a velocity signal using the same principle as described above, but instead 
using active analogue electronics.  Such a system was described by Bai and Wu (1999).  This was used 
to generate a feedback signal for a digital feed-forward controller to provide linear adaptive 
equalisation.  The work of Bai and Wu was developed in the context of control theory, wherein the 
analogue circuitry providing the velocity signal is referred to as an observer model.  
 
The impedance bridge shown in Figure 3.1 can only provide a velocity-analogous signal to the 
controller under the following two conditions: 
• The resistor in the lower-left leg maintains the value kReb  
• The transduction coefficient φ0 remains uniform with respect to diaphragm-coil displacement. 
These two conditions are not always met.  The actual DC resistance will change with coil temperature, 
which is affected by ambient temperature, and with heating due to thermal dissipation.  At large 

                                                      
1 This is mentioned in an off-hand manner in section 12 of Thiele’s famous 1961 paper (better known by its 1971 

re-publication in the J. of the Audio Eng Soc.) the main subject of which was the application of analogue 
active-filter alignment tables to the design of vented (ported) enclosures.  
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displacements the transduction coefficient will not be uniform with respect to displacement, as 
discussed in §2.2.1, part A.   
 
A further problem is that the velocity-analogous signal is proportional to the system output, the 
acoustic pressure, only if the loudspeaker is mounted in a closed box, wherein the acoustic pressure is 
given by the time-derivative of the diaphragm velocity as per (2.24).  If the loudspeaker is mounted in 
a ported or horn-loaded enclosure, the relationship between velocity and pressure will be more 
complex.  For this reason, the negative-output impedance amplifier is not a closed-loop control system 
in the strict sense of that shown in Figure 1.2.   
 
Whether the system of Figure 3.1 may be described as ‘motional feedback’ also seems to be a matter 
of disagreement in literature.  Adams (1979) firmly asserts “[this system] can rightly be considered as 
… the use of motional feedback.”1  The opposite is equally firmly asserted by Ståhl (1981) in his 
conclusions about a special application of a negative output impedance amplifier, wherein he states:  

[The present system] is not a feedback system.  In [a motional feedback] system, the output signal 
from the loudspeaker is sensed and in one way or another fed back to the amplifier. [The present 
system] instead uses an amplifier with a special output impedance to which the loudspeaker is 
connected.2 

Confusing nomenclature aside, perhaps the most interesting use of the negative output impedance 
resulting from Figure 3.1 was the ‘Amplifier Controlled Euphonic Bass’ (ACE) amplifier described by 
Ståhl (1981).  In addition to using this circuit to ‘cancel’ the effects of the DC-resistance, Ståhl 
described an amplifier wherein passive components are connected in parallel to the output of the 
amplifier’s terminals.  This system removed the effect of the loudspeaker’s components, allowing the 
response to be controlled by selection of values of the passive components connected in parallel with 
the amplifier output.  This technique found some commercial success in subwoofers which continues 
to this day.   
 
Both the negative output-impedance amplifier and the ACE amplifier described above suffer from a 
tuning problem.  Proper operation of both systems requires that the resistor kReb in the lower left leg of 
the bridge in Figure 3.1 be tuned to Reb, the blocked electrical resistance of the loudspeaker.  This is 
problematic, because the value of Reb will change with coil temperature, which will change with 
ambient temperature and with heating due to resistive electrical power dissipation.  The change in Reb 
due to this temperature variation will be on the order of –30 / + 60%.  The effect of such changes in 
Reb on the frequency response of an ACE amplifier-powered loudspeaker was found by Lechevalier 
(2000) to be between ±2dB to ±10dB, dependent upon frequency.3 

3.1.3. Feedback processing using vibration measurement 
The first publication describing what is more commonly thought of as motional feedback appeared in 
Hanna (1927), wherein a secondary coil on a traditional loudspeaker served as an electrodynamic 
velocity sensor, the output of which was fed back into the input of an amplifier.  An example of an 
electrodynamic loudspeaker with a suitable additional sensing coil is shown in Figure 3.2.  The same 

                                                      
1 p. 68, paragraph 5 of Adams (1979). 
2 p. 595, paragraph 3 of Ståhl (1981); it should be noted that Ståhl fails to point out that the negative impedance 

amplifier used in his system is equivalent to the ‘bridge-type MFB’ system Ståhl discusses subsequently on 
same page of his 1981 paper, in paragraph 5. 

3 Figure 68, p. 60 of Lechevalier (2000). 
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system was described by Olson (1947),1 Tanner (1951), and reviewed in a general discussion on 
motional feedback by Klaassen and de Koning (1968). 

 
 

Sensing Coil

Secondary Magnet

Extended Voice
Coil Former

Secondary
Magnetic Circuit

Pole-piece mount

Primary (drive)
voice coil

 
Figure 3.2: Example of an electrodynamic loudspeaker with a secondary magnet system and coil serving as an 
electrodynamic velocity sensor. 

The obvious disadvantage of the system show in Figure 3.2 is that it requires a secondary magnetic 
system, which will increase the cost and weight of the loudspeaker.  A less expensive strategy is to add 
a secondary winding to the primary coil.  This principle was first discussed in an application for 
microphones by de Boer and Schenkel (1948).  This method has the problem that there will be 
transformer-coupling between the drive and sensor coils, as noted by Tanner (1951).  This problem 
can be compensated for by additional coils, or electronically by an analogous model using active 
analogue electronics as was done by Mills and Hawksford (1989). 
 
The first motional feedback system using the signal from an inertial accelerometer was described by 
Klaassen and de Koning (1968).  These authors describe a system using an accelerometer mounted 
upon the dust cap (part 2b in Figure 2.2.)  A distinct advantage of acceleration feedback is that, if the 
loudspeaker is mounted in a closed box, the shape of the frequency response of the acoustic pressure 
will be the same as the acceleration response.  Thus the acceleration signal permits a more direct 
implementation of the closed-loop feedback system of Figure 1.2 than the velocity feedback systems.  
Unfortunately, due to the high cost of suitable accelerometers, commercial success of this technique 
has been limited, and now appears only in domestic ‘sub-woofers’ from a one manufacturer (Hall, 
1989).  
 
Other combinations of current, velocity, and acceleration feedback have been described in various 
papers.  Greiner and Simms (1984) describe one such system, wherein a current and accelerometer are 
used to provide a fairly flat frequency response system, with moderate distortion reduction over the 
same unit driven by a constant-voltage output amplifier. Catrysse (1985) described a feedback system 
using a combination of current and velocity feedback, though in this case the velocity signal was 
obtained by differentiating a displacement signal obtained by a capacitive sensor.  These systems have 
not received further interest since the publication of these papers, presumably due to the excess cost of 
the feedback sensors. 
 

                                                      
1 pp. 158-159 of Olson (1947); also appears in the more widely available Acoustical Engineering, Olson (1957), 

pp. 168-169. 
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3.2. Feedforward controllers 

3.2.1. Linear feedforward processing 
Linear feedforward processing for loudspeakers has been in use for many years.  Equalisation, by 
digital, and by passive and active analogue filters has been written on at length in literature, and 
widely successfully commercialised. Perhaps the most widespread application of linear feedforward 
equalisation of loudspeakers is the use of sixth-order vented box alignments described by Thiele 
(1961), among other authors. 
 
Analogue passive and/or active components can be used to extend the low-frequency range of a 
loudspeaker, forming one of the simplest ‘feedforward processors’ for a loudspeaker.  An informative 
review of these systems is given by von Recklinghausen (1985).  Active analogue filters for equalising 
the low-frequency response of a loudspeaker has been shown as a simple method to control the 
overall-Q value and cut-off frequency of a loudspeaker mounted in a closed box (Leach, 1990). (This 
type of linear feedforward processing is studied further in Chapter 5.)  
 
Frequency equalisation of the far-field response of a loudspeaker is a more sophisticated application of 
linear feedforward processing.  The tactic has generally been to process the audio signal before sent to 
the loudspeaker with some filter having a response approximating the inverse of a measured response 
of the loudspeaker.  Some research has focused on only low-frequency equalisation (Greenfield and 
Hawksford, 1991).  Other research has been made on filter design for full-frequency equalisation 
(Karjalainen et al., 1999.)  More research still has considered equalisation of the complete 
loudspeaker-room system (Kirkeby and Nelson, 1999.)  Unfortunately, these latter projects and others 
similar to them apparently did not fully comprehend a statement in Greenfield and Hawksford’s 1991 
paper, explaining: 

The on axis measurement appears to be an obvious choice [for the response to be inverted].  But 
bearing in mind the requirement for [equalisation] over a listening space, the value of correcting 
small aberrations that occur in the on-axis response and do not occur [in] the off-axis response 
seems suspect.  Indeed, this form of [equalisation] may prove detrimental to off-axis responses. 

As mentioned in the introduction, the sound field produced by the loudspeaker will vary with different 
positions from the loudspeaker.  For this and other reasons, detailed correction of the far-field 
response of a loudspeaker is not considered in this thesis.   

3.2.2. Nonlinear feedforward processing 
Perhaps the first discussion on feedforward compensation of loudspeaker nonlinearity appears in a 
paper by  MacDonald (1959).  This paper discusses how to compensate for simple distortion 
mechanisms such as squarers or cubers via pre- or post-distortion.  Although the suggested application 
is for a loudspeaker, the paper does not consider specifics of applying this method to the loudspeaker, 
wherein the squarers and cubers would need to be made frequency dependent.  The next step in such 
feedforward distortion compensation was not taken until over three decades later by Birt (1991), 
wherein nonuniformity of the transduction coefficient was compensated via a look-up table.  The 
diaphragm displacement was measured by a capacitive sensor of the same type used by Catrysse 
(1985), described above.  These methods for feedforward distortion compensation did not spur much 
commercial nor academic interest.  This is presumably due to the complexity of the hardware, or 
processing, or both.  
 
More recently, feedforward nonlinear processors for loudspeakers have been developed using the 
theory of feedback linearisation.  Although, by its name, feedback linearisation was conceived as a 
method for designing feedback controllers, several successful adaptations have led to pure 
feedforward controllers.  The theory of feedback linearisation and its application to loudspeakers is 
discussed in detail in the next section.   
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3.3. Feedback linearisation 
Feedback linearisation, also called the Differential Geometric Method for Nonlinear Control, is a 
general, abstract, complete formal theory for the control of nonlinear dynamic systems.  Although the 
word ‘feedback’ forms part of its name, it is not a pure closed-loop control system in the classical 
sense of a feedback servo controller.  The method uses elements of feedforward control, in that it 
utilises a complete model of the system’s dynamics, and feedback control, as it uses a measurement 
(‘feedback’) of the system’s state.  Together, these provide linear and nonlinear control of the plant’s 
dynamics. 
 
Feedback linearisation was developed in the late 1980’s in the field of Automatic Control.  
Presentations of this theory have been published in textbooks by Isidori (1989), Nijmeijer and Schaft 
(1990), Slotine (1991), and Vidyasagar (1993).   A concise review of the theory was presented in the 
introduction to a Ph.D. thesis by Vesterholm (1995). The presentation by Nijmeijer and Schaft is by 
far the most rigorous and pedantic, and thus unlikely to be understood by those without a thorough 
background in both control theory and differential geometry.   
 
It is not clear who first applied feedback linearisation to loudspeakers.  Beerling et al. (1994) cite a 
reference for application of feedback linearisation to a loudspeaker dated April 1992 (Suykens et 
al.,1992), wherein an inverse dynamics processor uses feedback signals from a model of the 
loudspeaker (observer model) to create a feed-forward distortion compensation processor.   However, 
this reference gives no bibliographical information other than ‘Leuven.’ It is inferred by your author 
that this is an internal publication of Katholiek Universiteit Leuven, in Belgium, though this is not 
certain. Five months later in September of that year, Wolfgang Klippel published a now well-known 
paper describing a ‘Mirror Filter’ (Klippel, 1992).  Klippel’s mirror filter operates in the same manner 
as the inverse-dynamic processor, with the exception that the loudspeaker’s behaviour is not modelled 
with a distinct observer model. Instead, the loudspeaker’s dynamics are simulated by direct processing 
of the audio input signal, leading to a controller which is overall more simple than that using an 
observer model (as in Berling et al.).  Appropriately, the terms ‘inverse dynamics processor’ and 
‘mirror filter’ can generally be understood to describe the same thing.  Klippel did not, however, make 
reference to feedback linearisation theory, though this is not surprising, as at that time it was quite 
unknown in the audio and acoustics community wherein most studies on loudspeakers were made.  All 
of this led to the similarity between the mirror filter and inverse dynamics processor to be missed, the 
clearest example of which appears in a paper by Schurer et al. (1998), a comparison study that 
considered the mirror filter to be in an entirely different category from methods based on feedback 
linearisation.  It was finally recognised by Klippel (Nov., 1998) that the mirror filter is simply a feed-
forward case of the integrator-decoupled form of feedback linearisation, wherein the system states are 
determined by processing of the input to the compensator, instead of by an observer model processing 
the output of the compensator.  This difference is discussed in detail in §§3.3.4 and 3.3.5. 
 
Feedback linearisation is based on a state-space description of the dynamics of the plant-to-be-
controlled, which in this case is the loudspeaker.  State-space descriptions are significantly different 
from the classical descriptions of loudspeaker dynamics.  Thus the state-space representation and its 
role in DSP-based distortion compensation are first reviewed.   

3.3.1. Feedback linearisation of continuous-time systems 
Consider a general class of systems that may be described by this first-order differential equation: 
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The system feedback function f, the input function g, and the output function h are all considered to be 
nonlinear functions of the state vector x(t).   A block diagram of such a system is shown in Figure 3.3. 

 
 

u( )t

f(x)

g(x)

x

x( )t
h( )x

y t( )
Σ ∫

.

 
Figure 3.3: State-space representation of a nonlinear system.  

The basic goal of linearisation is to create a linear relationship between some input signal and the 
output y(t) in (3.1).  In the formal theory of Feedback Linearisation, this is done by applying a 
coordinate transformation to the state vector x(t). The idea is to find a different state vector such that 
the operators f, g, and h are not nonlinear.  The formal theory of coordinate transformation of the state 
vector is not likely to be familiar to the audio, signal processing, or loudspeaker engineer.  As it is not 
necessary for comprehension of how feedback linearisation is used for loudspeaker distortion 
compensation, it is thus not explained nor used in this thesis.   
 
The essential feature of feedback linearisation is that by taking sufficient numbers of the total time 
derivative of the output y(t), given certain conditions, one will eventually arrive at an expression that 
depends explicitly on the input.  Such an expression can be inverted by simple algebraic manipulation.  
This inverted expression may then be used as a ‘control law,’ i.e. the basis for a controller 
(compensator), which will cancel-out (compensate) the nonlinearity in the system.  As per §2.3 of 
Vesterholm (1995), the total time derivative of the output y(t) of the system described by  (3.1) may be 
represented as 
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According to the theory of differential geometry, (3.2) may be re-written as the Lie derivative of 
h(x(t)) along the vector fields f(x(t)) and g(x(t)), using the notation 

( ) ( ) )()(L)(L)( tuttty xhxh gf +=&  (3.3) 

The Lie derivatives are calculated from the dot-product (inner-, or scalar-product) between the vectors 
( ) )()( tdt xxh∂ and f(x(t)) and g(x(t)), i.e. 
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If ( ) 0)(L ≠txhg , then the form of (3.3) will provide an explicit formula for the output y(t) in terms of 
the input u(t).  If, instead, ( ) 0)(L =txhg , then it will be necessary to take a higher-order time 
derivative of the output in order to obtain an explicit formula.  Assuming this is so, the second 
derivative of the output is taken and represented as: 

( ) ( ) )()(LL)(L)( )2( tuttty xhxh fgf +=&&  (3.5) 
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If the term  ( ))(LL txhfg  is zero, then it will again be necessary to obtain a still higher-order time 
derivative.  Given certain conditions, one will eventually find a derivative of the output for which the 
term in which the input u(t) appears will not be zero.  By defining the order of the derivative at which 
this occurs as r, it may be said that the system concerned has a relative degree of r.  The rth-derivative 
of the output may be expressed as 

( ) ( ) )()(LL)(L)( )1()()( tuttty rrr xhx fgf
−+=  (3.6) 

As (3.6) does depend directly in the input u(t), it can be used to form the basis of a nonlinear 
controller, or compensator.  This controller will process the signal v(t) according to the inverse of 
(3.6), and feed this to the input to the plant.  Thus the output of the controller (fed to the input to the 
plant) is processed as so: 
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the effect will be to create a linear relationship between the input v(t) and the output y(t) as so 
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where r is the relative degree of the system, defined above. 
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Figure 3.4: Block diagram of feedback linearisation control system. 

 
The relationship in (3.8), between the system input and the output created by the inverse-dynamic 
controller, may not be desirable.  The small-signal behaviour of the system, i.e. that which can be 
described by a linear model, may, in fact, be the desired input-output relationship.  (This is particularly 
the case for the loudspeaker, as will be discussed below.)  When this is the case, it is necessary to ‘re-
introduce’ the linear dynamics, by pre-filtering the signal v(t).   
 
It is assumed that for small-signals, nonlinearity in the plant may be neglected, and its input-output 
may be described by a linear transfer function as so: 
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The linear dynamics may be ‘re-introduced’ by pre-filtering the input to the inverse-dynamics 
controller v(t) by a linear filter with the frequency response of the linear dynamics of the system, i.e. 
Hld(s) in (3.9).  This is shown in block form in Figure 3.5.  Note that with the linear dynamics ‘re-
introduced’ in this way, the input to the controller is defined as w(t), instead of v(t). 
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state feedback
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-
)(sHld

w t( )

Nonlinear compensating processor

 
 

Figure 3.5: Feedback linearisation control system, with re-introduction of linear dynamics, providing 
compensation only of nonlinear dynamics. 

 

3.3.2. Example: simplified closed box loudspeaker in continuous-time 
We consider the state-space representation of the loudspeaker’s dynamics where the input u(t) is 
defined as the voltage-drop across the loudspeaker’s terminals: 
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As discussed above, the formal theory of feedback linearisation was first applied to a loudspeaker by 
Suykens et al. (1995,) in the paper mentioned in the introduction to this chapter.  In Suykens’ 1995 
paper, the details of applying the theory were worked out for a loudspeaker excluding any effects of 
acoustic loading.   This was extended to the case of a loudspeaker in a vented cabinet (a single 
acoustic resonator) by Schurer (1997.)  In the present example, we consider the case of a loudspeaker 
with simple acoustic loading, and with negligible electrical inductance.  With these considerations, the 
system, input, and output vector fields are as follows: 
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where the state vector x(t)is defined on ℜ 2 as so 
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Other terms in (3.11) and (3.12) are as defined previously in §§2.1-2.2.  Note that output y(t) is 
defined as the diaphragm displacement xd(t).  The diaphragm displacement is a suitable output, from 
the perspective of developing a feedback linearisation algorithm.  However, from the perspective of 
evaluating the electro-acoustic performance of the loudspeaker, it is more interesting to analyse the 
acoustic pressure.  The relationship between displacement and acoustic pressure is well-studied; see 
Small (1971).  
 
The control law for a nonlinear compensator for the loudspeaker described by (3.10)-(3.12) is 
developed using the method described above to obtain an expression for the output y(t) which depends 
explicitly on the input, which in this case is u(t).  The first time derivative of the output is given by  
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The input u(t) does not appear in the RHS of this expression.  Thus it is necessary to take the next 
higher-order derivative of the output y(t) with respect to time: 
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As this expression does depend directly on the input u(t) it can be used to derive a control law for 
linearisation (compensation of nonlinearity.)  The control law for linearisation is simply the inverse of 
the relationship between u(t) and )(ty&& in (3.14).  From the practical standpoint of implementing a 
controller with some input signal, we consider the input to this controller as v(t).  The controller 
operates on the input v(t) according to: 
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The ‘control law’ for the controller, given in (3.15), creates the following relationship between v(t) and 
xd(t): 

2

1
)(
)(

)()(
ssv

sx
tvtx d

L

d =⇒=&&  (3.16) 

Notice that (3.16) is equivalent to saying that the diaphragm acceleration will have a unity transfer 
function with respect to the input signal v(t).  Although this does have the advantage of eliminating 
nonlinear behaviour of the loudspeaker, it is not the desired linear input-output frequency response.  
At low frequencies, this response would generate very large displacement, thereby generating very 
large nonlinearities - beyond that which could be realistically controlled. 
 
For a loudspeaker mounted in a closed-box, the desired linear acceleration frequency response is, as 
discussed in §2.1.7, a second-order high-pass filter.  This desired response may be restored in the 
controller by pre-filtering the input to the nonlinear control law v(t) by an appropriate low-pass filter.  
By defining the input to this filter as w(t), such a filter should have the following transfer function: 
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This filter ‘pre-emphasises’ v(t), the input to the inverse dynamics processor.  Given that the inverse 
dynamics processor eliminates all behaviour of the plant, i.e. both linear and nonlinear dynamics, the 
pre-emphasis the filter of (3.17) represents a re-introduction of the linear dynamics of the plant.   

3.3.3. State observer and partial state measurement 
The controller developed using the theory of feedback linearisation described in §3.3.1 above suffers 
from the same problem as traditional feedback processors described in §3.1 above.  Namely, the 
controller developed according to feedback linearisation requires measurement of the state vector  x(t).  
In the example of feedback linearisation applied to the loudspeaker mounted in a closed box described 
above, the state vector comprises the diaphragm displacement xd(t) and velocity ud(t).  As per the 
discussion on traditional feedback systems, directly measuring the displacement and velocity is either 
impractical or expensive, or both.   
 
One solution to this problem is to make a partial state measurement, i.e. to measure one state, and 
simulate the other states using a state observer. One example of how this can be done was presented 
by Beerling et al. (1994).  In the system presented by Beerling et al., an inertial accelerometer is 
placed on the loudspeaker diaphragm.  The state observer integrates and double integrates this signal 
from the accelerometer, and also calculates the voice-coil current ic(t) (needed in that case for 
compensation of nonlinearity caused by Leb nonuniformity).  The distinct disadvantage of this 
approach, for the microspeaker, is that no suitably inexpensive and lightweight accelerometer is 
available.   
 
Another possibility would be to measure the voice-coil current, as per the arrangement shown in 
Figure 3.6. In this case, a state observer would simulate the state vector with an appropriate model of 
the loudspeaker. As it happens, there is problem rendering impractical any such approach wherein a 
state observer predicts the state vector from a measured signal.   
 
There is a time-delay inherent to all sigma-delta A/D and D/A converters.  Sigma-delta converters are 
used in all modern digital audio systems, due to their low cost relative to their frequency-resolution 
product.  These converters use linear-phase interpolation and decimation filters for converting the 
high-frequency one-bit stream to the audio bandwidth full resolution (typically 16 bit) data stream.  
Such filters create a delay of some 20 or so samples (Zölzer, 1994), the exact number depending on 
the design of the interpolation filter.  Thus the delay in the complete ‘round-trip’ caused by D/A and 
A/D conversion would be some 40 samples.  This would make the state predicted by the state observer 
of Figure 3.6 some 40 samples ‘late’ for the input signal v(t).  For audio systems, this effect limits the 
bandwidth of this type of controller such that it is impractical.   
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Figure 3.6: State vector estimation based on partial state measurement, e.g. ic(t), and a state observer.  

 

3.3.4. Feedforward formulation using a ‘simulation’ state observer  
A feedback linearisation-based controller presented by Schurer et al. (1997) employed a state observer 
which made no measurement on the plant whatsoever.  In this system described by Schurer et al., the 
input to the state observer was the output from the controller u(t), as per Figure 3.7.  This is 
theoretically possible, as the to the system vc(t) – and with an appropriate and accurate model of the 
system, the state vector can be predicted from the output of the controller u(t).  In this case, the 
feedback linearisation controller uses no signal from the actual plant.  This results in a controller of the 
pure (non-adaptive) feedforward type, as per Figure 1.3. 
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Figure 3.7: State observer used to determine x̂ , an estimate of the system’s state vector. 

 
Schurer implemented the complete controller with digital processing.  The digital processor, operating 
in discrete time, cannot directly implement a model of the loudspeaker which is expressed in 
continuous time with differential operations.1  Schurer’s solution to this problem was to form his 
model of the loudspeaker in the state-space first-order differential equation of (3.2), and solve this 
equation by numerical integration.  In this way, the new value of the state vector is predicted from the 
existing value of the state vector and its derivative as so  
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where αj and βj are coefficients defined by numerical integration rules .   
 
One disadvantage to this approach is that, due to the feedback loop created between u(t), the estimated 
state ][ˆ nx , and the use of this estimated state in the inverse dynamics processor, it can become 
unstable.   
 

3.3.5. Feedforward formulation  assuming ideal alignment 
According to the theory of feedback linearisation, if the parameters of the inverse dynamics processor 
of Figure 3.4 are tuned to the actual plant with reasonable accuracy, the state vector can be simulated 
from the input to the nonlinear controller v(t) in a more simple manner than using the state observer 
described in §3.3.4.  This is a result of (3.8), stating that, if the Inverse Dynamics processor is 
accurately tuned to the plant, the rth

 derivative of the output will be given by the input to the nonlinear 
controller, v(t).   
                                                      
1 This problem was discussed at a general level in §2.3, and is the motivation for developing the discrete-time 

models of the loudspeaker developed in that section. 



 Theory of active control of loudspeakers 85  

 

 
The simplification provided by this method is easily demonstrated for the case of the closed-box 
loudspeaker, ignoring Leb, described in §3.3.2.  According to (3.16), the first system state x1(t) = x(t) 
will have its second time derivative directly equal to the modified control input v(t).  Therefore, 
assuming the feedback linearisation law in (3.15) operates properly, the system states can be 
determined by integration of the input to the Inverse Dynamics controller, v(t).   
 
As mentioned above, integration cannot be performed directly in a digital implementation.  It is 
necessary to perform a numerical approximation to the integration.  The system states are, therefore, 
approximated as so: 
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A block diagram of the controller wherein the states are computed as above is shown in Figure 3.8. 
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Figure 3.8: State calculation by direct integration of input to nonlinear controller. 

 
Note that if Leb is to be considered in the loudspeaker, the state vector will include the voice-coil-
current ic(t).  The voice-coil current cannot be determined from the input to the nonlinear controller 
v(t) by simple integration.  Instead, it is necessary to predict the current using the linear voltage 
equation of (2.1), as explained by Klippel (1992).  Given that the state vector will invariably include 
the diaphragm velocity ud(t), that the voice-coil voltage will also generally be known, and that there 
are no memory-dependent terms in (2.1), calculating the current in this way is quite simple and 
straightforward – considerably more simple than using the state observer described in §3.3.4 above. 
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3.3.6. Feedback linearisation of discrete-time systems 
A formulation of feedback linearisation also exists for discrete-time systems.  Using this discrete-time 
formulation is attractive because it is more practical to implement the compensator with a digital 
processor.  As explained above, previous applications of feedback linearisation to the loudspeaker 
have used continuous-time formulations, and then used discretisations of certain parts in order to 
implement the controller in a digital processor.    
 
Using the discrete-time model of the loudspeaker developed in §2.3.4 above, it has been found that the 
discrete-time formulation of feedback linearisation can be directly applied to a controller for 
compensation of loudspeaker nonlinearity.  
 
For the application of discrete-time feedback linearisation, it is necessary to consider the system in the 
following state-space form 
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where all these terms have the same meaning as for the continuous-time form of (3.1) above.  
 
Application of feedback linearisation to the system of (3.21) by considering the system output at time 
interval n + 1: 
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If the derivative of the RHS of this with respect to the input u[n] is not zero, i.e. if 

0
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then an input-output link is established, and the output can be solved in terms of the input. If this 
derivative is zero, then it will be necessary to take the next output sample, as so 

( ) ( )( )
( ) ( )( )( ) ( ) ( )( )( )( )

( ) ( )][,]1[,
]1[][][][][][][

]1[]1[]1[]2[

nunu
nununnnunn

nunnny

gfgfh
xgxfhgxgxfhfh

xgxfh

oo +=
++++=

++++=+
 (3.24) 

where o  denotes ‘composition’.  If the derivative of the RHS with respect to the input is again zero, it 
will be necessary to take again a higher-order composition.  This procedure is repeated until one finds 
the derivative of the rth composition with respect to the input to not be zero, represented as  

( )][,][ nurny r gfh o=+  (3.25) 

There is not a general expression for the inverse of this expression for u[n] as there is for the 
continuous-time case in (3.7).  The form of the solution will depend on the specific nature of the 
system, input, and output vector fields, f, g, and h, respectively. 
 
In the next section, this discrete-time formulation of feedback linearisation is applied to the discrete-
time model of a loudspeaker, developed in §2.3.4 above, to provide a simple algorithm for 
compensation of nonlinear distortion in a loudspeaker.   
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3.3.7. Feedback linearisation with a discrete-time loudspeaker model 
This section presents a new discrete-time implementation of feedback linearisation for compensation 
of nonlinear distortion in a loudspeaker.  This is done by applying the discrete-time formulation of 
feedback linearisation presented above to the discrete-time nonlinear loudspeaker model presented in 
§2.3.4 
 
The motivation for developing a new algorithm for nonlinear distortion compensation is cost-
reduction.  In Chapter 5, discussions on the cost of nonlinear distortion compensation assume the only 
cost of the compensation is the additional amplifier output it requires.  An  important consequence of 
this is that the algorithm for performing the compensation must be as simple as existing algorithms 
running on DSP’s in the target product – so as not to increase the cost of the hardware performing the 
compensation processing.  A rough quantification of this limit is that the algorithm should not be more 
complicated than several second-order IIR filters.  This limit precludes the use of more complex 
distortion-compensation algorithms such as Volterra series methods, Neural Networks, NARMAX 
models, or other ‘black-box’ methods.  To this end, a new, simple, distortion compensation algorithm 
suitable for DSP implementation has been developed and is presented here.  As stated above, simplicity 
has been maintained by using the nonlinear discrete-time model of the loudspeaker dynamics 
developed in §2.3.4, and applying the discrete-time formulation of feedback linearisation.   
 
This is an alternative to previous digital implementations of feedback linearisation for compensation 
of nonlinear distortion.  As discussed in §3.3.4, Schurer (1997) used numerical integration to simulate 
a continuous-time model of the loudspeaker.  The method presented here, using a discrete-time model 
of the loudspeaker, avoids the need for this simulation.  
 
Consider the displacement output from the voice-coil voltage by the nonlinear discrete-time model of 
(2.85), 
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where all the terms have the same definitions as in chapter 2.  As per the theory of feedback 
linearisation for a discrete-time system one considers the derivative of the output with respect to the 
input.  In (3.26), the output is xd[n], and the input is vc[n]. It can be seen by inspection of the RHS of 
(3.26) that its derivative with respect to xd[n] will depend explicitly on the input vc[n].   
 
According to the theory of feedback linearisation, the control law is obtained from (3.26) by inverting 
the relationship defined between xd[n] and vc[n]. This inverted relationship, obtained by 
straightforward algebraic manipulation, is as so: 
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This equation may be interpreted as specifying the voltage needed to produce a certain displacement.  
It may be used as a control law for nonlinear compensation, as it calculates the voice-coil voltage 
needed to achieve a certain displacement, as per the nonlinear loudspeaker model of (3.26).  
Interpreted in this way, it defines the input-output relationship of a controller, the input to which is the 
specified displacement xd[n], and the output from which is the necessary voltage vc[n] to produce this 
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displacement.  By replacing xd[n] with rp[n] and vc[n] with rlin[n], this nonlinear control law may be 
defined as 
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where rp[n] is the input to the nonlinear controller, rlin[n] is the output from the nonlinear controller, 
and ud·e[n] is an estimate of the diaphragm-coil velocity.  The estimate of the diaphragm-coil velocity 
ud·e[n] is  computed by differentiating the input to the nonlinear controller rp[n] as so: 
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where the coefficients of this differentiation approximation are as discussed in §2.3.4. 
 
An important feature of the nonlinear control law of (3.28) is its simplicity.  It effectively consists of a 
second-order IIR filter, plus the addition of the polynomial evaluations for ( )][nrdφ  and ( )][1 nrk d .  
 
The studies presented in Chapter 5 consider that the nonuniformity in the suspension stiffness is 
negligible.  As shown in an example measurement in Figure 2.13, the stiffness nonuniformity is minor.   
 
A necessary addition to the control law of (3.28) is the ‘re-introduction of linear dynamics,’ as per the 
presentation of feedback linearisation of continuous-time systems presented in §3.3.1.  For the case of 
(3.28), this is done by pre-filtering rlin[n] with a filter having the linear response of the displacement 
response.  This can be done in a straightforward manner, with linear second-order IIR filter. 
 
The effectiveness of a controller using the algorithm in (3.28) is evaluated by measurements presented 
in §5.2.3, below. 
 
One interesting development in the application of feedback linearisation to loudspeakers came from 
Klippel (Jun. 1998).  This paper showed that filtering for re-introduction of linear dynamics can be 
combined with the nonlinear control law.  Klippel’s work was done for the continuous-time 
formulation of feedback linearisation.  Attempts were made as part of research for this thesis to make 
the same simplification to this discrete-time formulation of feedback linearisation, but were 
unsuccessful.  This may be a topic for further research. 
 

3.4. Adaptive feedforward controllers 
As discussed in the introduction, the general problem of a pure feedforward controller is its sensitivity 
to model uncertainties.  As discussed in §2.4, various characteristics of the loudspeaker change with 
temperature and ageing.  As the actual loudspeaker’s properties drift from those assumed by the 
feedforward controller, the performance of the feedforward controller will decrease.  This sensitivity 
to model uncertainties was explained by Schurer (1997, p. 7) as the primary disadvantage of 
feedforward nonlinear compensation systems. 
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As discussed in the introduction, tuning the parameters used in the model of the loudspeaker used by 
the feedforward processor can be done by system identification.1  System identification is the process 
of tuning the input-output characteristics of a model of a dynamic system to that of an actual dynamic 
system.  A feedforward controller using this features is generally referred to as an adaptive 
feedforward controller.  
 
Some literature has appeared on adaptive feedforward control for loudspeakers.  Research on linear 
adaptive feedforward control, focusing on loudspeaker-room equalisation, has been published by 
Elliott and Nelson (1989), Kuriyama and Furukawa (1989), Radcliffe and Gogate (1992), Craven and 
Gerzon (1992), and Elliott et al. (1994).  These methods attempted to achieve equalisation of the 
complete electroacoustic path, to the point of the listener, typically using high-order adaptive FIR 
digital filters.  
 
Research on nonlinear adaptive feedforward control has also been published.  Klippel (Nov. 1998) 
presented a method for parametric determination of the nonlinear characteristics of a loudspeaker by 
nonlinear adaptive filtering.  
 
In this thesis, linear adaptive control is of primary interest.  It is considered that only the linear 
properties of the loudspeaker are subject to drift.2  Although the advantages of nonlinear control are 
the focus of the thesis, the nonlinear properties to be controlled are considered static – i.e. they can be 
known a priori.  This is because they are defined by the geometry of the construction of the 
loudspeaker; it is assumed that this can be known for a given loudspeaker type. 
 
Additionally, only parametric, or ‘grey box’ loudspeaker system identification is considered in this 
thesis.  High-order FIR filters, Volterra filters, NARMAX models, Neural networks and other ‘black-
box’ methods are not considered.  This is a choice, driven by the need to keep the complete adaptive 
feedforward controller simple.  The need for simplicity is driven by cost.   
 
Restricting loudspeaker system identification to parametric methods precludes using the FIR model 
presented in §2.3.1, and requires the use of the IIR filter models §§2.3.2 and 2.3.3.  The background 
theory on adaptation of an IIR filter model is presented in the next section (§3.5).  Chapter 4 presents 
details of applying this theory to the loudspeaker, and measurements of its identification performance.  
 
By a remarkable stroke of luck, the five parameters which vary with manufacturing tolerance, 
temperature, and age, and thus cannot be known a priori, can all be determined from the electrical 
impedance.  Although six parameters define the complete lumped parameter model of the loudspeaker, 
one of these – the diaphragm-coil moving mass md – can be known a priori, as it will not change 
throughout the lifetime of the loudspeaker.  This permits the feedforward processor to be fully tuned to 
a loudspeaker by analysis of only the electrical impedance (i.e. without direct vibration measurement).  
This is significant, as the electrical impedance can be analysed by a simple measurement of the 
electrical voice-coil current, and does not need vibration measurement which is impractical and 
expensive.   

                                                      
1 System identification is a general field in applied electrical, signal processing, control engineering, and basic 

terms used for discussions on the subject are different in each of these three fields.  The discussion used here 
most closely follows that used in the field of signal processing. 

2 As per the discussion in §2.4, the parameters known to drift with temperature and other considerations are 
summarised in Table 2.1. 
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3.5. System identification by adaptive filtering 
As discussed in the introduction, an adaptive feedforward controller as shown in Figure 1.4 uses a 
plant model to tune the feedforward controller to the plant.  The plant model is implemented as an 
adaptive filter performing system identification on the plant.  This adaptive filter calculates a predicted 
output yp[n] from the input u[n] using a weighting vector w, according to a filter function ( )w],[nuf .  
The weighting vector w is tuned to minimise, in a mean-square sense, the error ε[n], calculated as the 
difference between the measurable plant output ym[n] and the predicted plant output yp[n].  When the 
adaptive filter has reduced the error ε[n] below some threshold, it will begin to update the feedforward 
processor in Figure 1.4 accordingly.   
 
In order to determine variation in those parameters given in Table 2.1, the filter function ( )w],[nuf  
must be designed along the specific dynamics of the plant.  This is in contrast to many applications of 
adaptive filtering, wherein the plant is treated as a ‘black-box’, the dynamics of which cannot be 
known, and the purpose of the filter is simply to minimise the mean-square value of ε[n] in absolute 
terms.  It is particularly important that the dynamics of ( )w],[nuf be analogous to those of the plant if 
an indirect output signal is measured such as the voice-coil-current.  If in this case the dynamics of 

( )w],[nuf are different from the plant, the updated weight vector will not be readily usable by the 
feedforward processor.   
 
The difference between the measured plant output ym[n] and the predicted plant output provides an 
error signal ε[n], as shown in Figure 3.9.  The parameter vector w is determined by minimising the 
error ε[n] in a mean-square sense,  This is the basic arrangement for using an adaptive filter for system 
identification, as described in standard textbooks by  Widrow and Stearns (1985) and Haykin (1996). 
 

Plant Model

u n[ ]

ym[ ]n

y np[ ]
Σ

-
+

ε[ ]n
w],[nuf

 

Figure 3.9: Basic arrangement of an adaptive filter performing system identification.  

3.5.1. General adaptive algorithms 
Several methods exist for tuning the weight vector w such that it will minimise the error between the 
filter’s predicted output yp[n] and the measured output ym[n].  Generally, such an optimally tuned filter 
is referred to as a Wiener Filter.1 
 
For audio systems considered in time-domain, the weighting vector is nearly invariably a real-valued 
vector of length N, i.e.:2  

[ ] N
Nwww ℜ∈= ww ...21 . (3.30) 

An error surface ξ(w) is defined by the expectation value of the mean-square error, as so: 

[ ] ( )[ ] ( )( )[ ]222 ],[][][][][)( ww nufnyEnynyEnE mpm −=−=ε=ξ  (3.31) 

                                                      
1 The name ‘Wiener Filter’ comes from a definition for an optimally tuned continuous-time filter, published by 

Wiener and Hopf (1931). 
2 The weight vector w is defined here as a row-vector; in other presentations of adaptive filtering, it is typically 

defined as a column-vector. 
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This error surface is the expectation value of the error for different values of the weighting vector w, 
for a given input signal u[n] and a given measured signal ym[n].  The purpose of the adaptive filter is to 
find the values of w which give the minimum value of ξ(w). This value of w is called the optimum 
value, noted by  wopt.   
 
For an Nth-order linear FIR filter (also transversal, non-recursive, or purely feedforward filter), the filter 
function f(u[n],w) is the scalar product between a vector u, a delay-line of the input signal of the same 
length as w, and w as so:  

[ ] wwuw ·]1[...]1[][·)],[( −−−== Nnunununuf  (3.32) 

In this case the error surface of Figure 3.9 becomes: 

[ ] wpRwww ·2·][)( 2 −+=ξ nyE m  (3.33) 

where R is the input-signal autocorrelation matrix, and p is the input-signal-to-measured-signal cross-
correlation vector.1  It can be shown that if ym[n] is described by the signal u[n] by a linear, time-
invariant system, then the values of w which will minimise the error ε[n] in a mean-square sense are 
given by2  

pRw 1
opt

−=  (3.34) 

This result in (3.34) is independent of the choice of the filter function ( )w],[nuf .  However, it can 
only be used if the matrix R can be inverted (is not singular).  For the FIR filter, R will generally be 
invertible, and thus (3.34) provides a general solution for finding wopt for this type of filter.  However, 
this is not generally used in practical adaptive filters, because it is computationally expensive to 
calculate the matrix R and vector p and subsequently invert R.  Considerable research has gone into 
reducing the complexity of computing these values, leading to a body of algorithms referred to as 
recursive least squares (or method of least squares, or sequential regression)3.  These methods are not 
presented nor is their application investigated in this thesis, as more simple algorithms have been 
found to work, which are explained hereafter. 
 
Instead of determining wopt in one step as in (3.34), adaptive filters usually use an iterative method.  If 
the error surface ξ(w) is uni-modal, i.e. is convex with a single global minimum, wopt may be 
determined by updating w along the gradient of ξ(w).  To this end, the gradient of ξ(w) is defined as  
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Using the method of steepest descent, the weighting vector w can be iteratively shifted to its optimum 
value.  A new estimate of the weighting vector is obtained by subtracting from the its previous 
estimate the gradient d, as scaled by convergence parameter µ4.  In this way, one has w[n+1], an 
updated estimate of w, obtained as so  

                                                      
1 These are standard concepts in adaptive filtering (signal processing).  A basic explanation may be found on p. 

20 of Widrow and Stearns (1985).  A more detailed description may be found in §2.3 of Haykin (1996). 
2 This represents the solution to the Wiener-Hopf equations for a linear, discrete-time system, where the weight 

vector w describes the coefficients of an FIR filter; see  p. 22 of Widrow and Stearns (1985) or p. 206 of Haykin 
(1996). 

3 See pp. 147-153 of Widrow and Stearns (1985), or pp. 483-533 of Haykin (1996). 
4 The convergence parameter µ may also be a vector, in such case each element of the gradient vector d is 

weighted differently. 
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where µ is the convergence parameter, and d[n] is the error surface gradient for weighting vector w[n].  
The convergence parameter µ must be carefully chosen.  If µ is too small, it will require large numbers 
of iterations to obtain wopt; if µ is too large, the value w[n+1] will overshoot wopt, leading to erratic 
convergence or unstable calculation.   
 
The method of steepest decent does not itself provide a sufficiently simple algorithm for real-time 
calculations.  This is because the derivatives kw∂ξ∂ )(w are expensive to compute, particularly if they 
must be recalculated at each time interval n.  Widrow and Hoff (1960) found that the gradient of the 
expectation value of the error, defined in (3.35), may be approximated by the gradient of the 
instantaneous value of the error, as so: 
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where ][ˆ nd kw  is the instantaneous estimate of the gradient of the error surface along the parameter wk 
at time interval n.  With this simplification, the weighting vector may be updated in the same manner 
as (3.36) as so 
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where ][ny pw∇ is a vector containing the instantaneous values of the derivatives of the output with 
respect to each element of the weighting vector w at time index n.  This method for updating w was 
named by Widrow and Hoff as the LMS algorithm.  It is referred to as a stochastic gradient method, 
due to its estimation of the true gradient, defined in (3.35), with only its instantaneous value.  
Additionally, one does not need to consider the derivative of the square of the error with respect to 
each weighting coefficient, but simply the derivative of the error signal itself.   Experience has shown 
that this estimation leads only to a random error in the estimate of the gradient, which averages to zero 
over multiple iterations of updating, leading to an unbiased estimate of wopt.  The remarkable 
combination of simplicity and effectiveness of this algorithm have led to its widespread commercial 
use in adaptive equalisation, control, array beam-forming, and echo cancellation, among other 
applications.   
 
The most common filter structure used for adaptive filtering is the FIR filter, as it is inherently stable.  
For this type of filter, the LMS algorithm reduces to a form even simpler than (3.38).  The derivative 

kp wy ∂∂ reduces to ]1[ −− knu , producing  
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3.5.2. Adaptive IIR filters 
As explained in §2.3 above, a compact-discrete-time model of a loudspeaker requires an IIR filter.  It is 
known that adaptive algorithms for IIR filters have several difficulties that those for FIR filters, 
described above, do not.  Recent tutorials by Shynk (1989) and Netto et. al. (1995) describe these 
problems, and how different adaptive algorithms addressed them.   Briefly, these problems are: 
• Risk of instability 
• Slow convergence rate 
• Risk of convergence to local (non-global) error minima 
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These problems have been judged to be surmountable for the discrete-time loudspeaker model for two 
reasons:   
• A great deal of a priori knowledge of the ‘system-to-be-identified,’ the electrical admittance of the 

loudspeaker, is available. 
• Initial guess of the filter’s parameters can be made within a short range from their actual value. 
 
The LMS IIR algorithm, is identical to the LMS algorithm for the FIR algorithm of (3.39), except for the 
expression for the derivatives of output error with respect to the weighting coefficients.  For the IIR 
filter, the filter output is calculated recursively, complicating the definition of the derivative of the 
output with respect to the weighting coefficients wk.  Consider the basic definition of an IIR filter, 
wherein the filter output is calculated as: 

][...]2[]1[][...]1[][][ 2110 NnyanyanyaMnxbnxbnxbny pNppMp −−−−−−−−++−+=  (3.40) 

According to the ‘small step-size approximation’ developed by White (1975), the derivatives of the 
output yp[n] with respect to the feedback weighting coefficients ak and feedforward coefficients bk may 
be approximated by the following recursive calculation 
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With this definition, the derivatives may be calculated recursively as so 
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This is an important general feature of the LMS algorithm for IIR filters.  It will be applied to various 
filter structures serving as discrete-time models of the loudspeaker.  The details of this application is 
the subject of the next chapter.  
 
It has been proposed by Feintuch (1976) that the latter sums in (3.41) and (3.42) can be discarded.  
However, it remains contentious discarding these sums does or does not lead to bias error in the 
converged values.  For this reason, this simplification has not been used.  It may be a suitable subject 
for further research.  
 
Adaptive lattice-form IIR filters have received much interest in recent years (Parikh et al., 1980).  The 
primary advantage of lattice-form IIR filters is the simplicity with which their stability may be 
assessed.  However, it was found as part of background research for this thesis that the connection 
between physical parameters of a system and the parameters of a lattice filter are considerably more 
complicated than in the direct IIR form presented above.  For this reason, lattice-from IIR filters are not 
investigated for the loudspeaker system identification. 
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4. Loudspeaker system identification 
This chapter presents methods for loudspeaker system identification.  The focus is specifically on 
those aspects of the loudspeaker which cannot be known outright from its design and manufacturing 
specifications. These are properties of the loudspeaker which vary due to manufacturing tolerances, 
temperature changes, and ageing, as discussed in §2.4.  
 
In order to ensure that the algorithms for system identification meet the criterion for simplicity set out 
in the introduction, i.e. that the algorithms not be more complicated than existing audio DSP 
algorithms, an iterative system identification procedure must be used, using adaptive filtering, the 
basics of which were presented in §3.5, above.   
 
Again, to simplify the system for active control, an adaptive filter structure is chosen which 
corresponds to the physical dynamics of the loudspeaker.  As discussed in control systems theory, this 
is to say the system identification uses grey-box model structures as opposed to black-box model 
structure (Ljung, 1999, p.13).  In this way, the parameters identified by the adaptive filter can be 
directly used by the feedforward processor, and do not require transformation (as would be necessary 
if a black-box model were used1). It is for this reason that the discrete-time model for a loudspeaker is 
developed in §2.3, above. 
 
An overview of the approach to system identification is given in §4.1.  This section first describes the 
three different error signals used. A description of the hardware implementation and the loudspeaker-
under-test is given in §4.1.2.  A description of the software implementation of the algorithms is given 
in §4.1.3. 
 
The approach to loudspeaker system identification is nearly identical to that described by Knudsen et 
al. (1989).  The parameter updating algorithm used here, however, is the standard LMS IIR output-error 
algorithm (presented in §3.5.2).  Knudsen et al. used techniques more common to off-line system 
identification, which can be roughly understood in the terms of adaptive signal processing as batch-
processing equation-error or ARMAX techniques.  These latter parameter updating methods are by far 
more stable and robust than the LMS IIR output-error algorithm.  However, they were considered too 
computationally expensive for the present application.  As part of research for this thesis, it was found 
that by using special a priori knowledge available for a given loudspeaker, convergence, stability and 
robustness of the IIR LMS algorithm could generally be guaranteed.  Discussions on how this was done 
are presented in §§4.1.4 - 4.1.6. 
 

4.1. Overview of approach, implementation, and evaluation 
A brief overview of the three different forms for generating an error equation under study in this thesis 
are presented in §4.1.1.   The hardware 
 
The linear dynamics of the loudspeaker in all of these forms are based on second-order IIR filters.  As 
the parameters of these IIR filters are adapted, the conditions for stability of an IIR filter are reviewed 
                                                      
1 One example of a black-box model for the loudspeaker would be an FIR model of the electrical impedance.  As 

discussed in §2.3.1, it would be necessary to identify the physical parameters of a loudspeaker from the 
coefficients of the adapted FIR filter before they could be used by a feedforward processor.  This type of 
processing is considered too computationally expensive. 
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in §4.1.4.  In early trials of the system identification algorithms, it was found that the convergence was 
either slow or erratic.   
 
It was found that, by using tolerance information which can be known a priori about any loudspeaker, 
the parameters of the IIR filters could be kept within a minimum distance of their optimum values.  
This has been achieved by use of a ‘tolerance quadrilateral,’ presented in §4.1.5.   

4.1.1. Forms for developing an error equation 
As per the discussion on feedback processing for loudspeakers in §3.1, direct output signals from the 
loudspeaker such as a sound field measurement or vibration measurement are expensive and/or 
impractical to obtain.  For this reason, plant models (loudspeaker models) defining the structure of the 
adaptive filter for system identification are considered only for the electrical characteristics of the 
loudspeaker.  These consider (in discrete time) measurement of the voice-coil voltage vc·m[n] and the 
voice-coil current ic·m[n].  Two obvious plant models suggested by Knudsen et al. (1989) with these 
two signals available are: 

• Electrical admittance (prediction of current from the measured, or known, voltage) 
• Electrical impedance (prediction of voltage from the measured current) 

 
In the electrical admittance output error form, an adaptive filter makes an estimate (‘prediction’) of 
the voice coil current ic·p[n].  The input to this filter is the measured voice-coil voltage vc·m[n] and 
measured voice-coil current ic·m[n].  In this form, the electrical inductance Leb is assumed to be 
negligible.   With this assumption, the basic voltage equation of (2.1) has no differential operators, and 
can thus be expressed directly in discrete time as so: 

( ) ][][][][ nunxniRnv ddcebc φ+=  (4.1) 

Solving for current in this equation produces 

( )( )][][][1][ nunxnv
R

ni ddc
eb

c φ−=  (4.2) 

The strategy of this ‘admittance output error form’ is to predict the electrical current with this 
equation, using a measurement of the voice-coil voltage, and a prediction of the diaphragm-coil 
velocity.  The classical adaptive filtering techniques described in §3.5 are used to adapt free 
parameters in order to minimise the difference between the measured and predicted current, in a mean-
square sense.  Investigations into the performance of this plant model structure for loudspeaker 
parameter identification are presented in §4.2, below. 
 
In the electrical impedance output error plant model structure, the measured voice-coil current ic·m[n] 
is used to calculate a predicted voice-coil voltage vc·p[n].  This is done directly as per the voltage 
equation of (4.1).  This predicted voice-coil voltage is compared with the measured voice-coil voltage 
vc·m[n], and as per the electrical admittance structure described above, parameters are tuned to 
minimise the error between the two.  (Note that since solid-state power amplifiers provide constant-
output voltage, the voice-coil voltage can be known from the output signal from the controller, and 
thus need not be measured separately.)  It is shown that identification of the electrical inductance Leb 
can also be performed with only a modest increase in complexity.  Investigations into the performance 
of this plant model structure for loudspeaker parameter identification are presented in §4.3, below. 
 
An alternative to these two plant model structures are motional-signal equation error techniques.  Such 
a technique was presented by Klippel (1999), wherein the diaphragm-coil velocity ud(t) is predicted by 
the force equation and the voltage equation, both including parametric nonuniformity of the type 
described in §2.2.1. An error signal, to be minimised in a mean-square sense, is obtained from the 
difference between the velocity predicted by the force and voltage equation, as so: 
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where hdt[n] is the impulse response of a differentiation approximation as discussed in §2.3.4, and 
][nh mY is the impulse response of the mechanical mobility as discussed in §2.3.3. 

Klippel showed how this method could be used to identify coefficients of truncated polynomial series 
approximations to the parametric nonuniformity in the transduction coefficient, suspension stiffness, 
and blocked electrical inductance.   
 
One disadvantage in the development of this error equation in (4.3) is that it requires the displacement 
signal xd[n].  This is needed for evaluation of the transduction coefficient nonlinearity, i.e. evaluation 
of ( )][nxdφ .  This can, of course, be obtained by integration of the displacement signal.  However, it 
has been found to be simpler to base the error equation on the displacement, obviating the need to 
compute it as an extra step.  This form is based on this error equation: 
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where ][nh mX is the impulse response of the mechanical receptance, as discussed in §2.3.2. This 
method is referred to here in as the displacement equation error plant model.  Basics of its 
performance are presented in §4.4.  It is found that this displacement equation error method is 
considerably more complicated than the current and voltage output error methods described above. For 
this reason, this method is not considered in complete detail.   
 
The system identification techniques developed in this chapter are suitable only for a loudspeaker 
mounted in a closed box.  Modelling more complex acoustic enclosures has not been considered.   
 

4.1.2. Hardware implementation and system-under-test 
The adaptive algorithms for system identification were investigated on actual loudspeakers.  A block 
diagram of the hardware system used is shown in Figure 4.1.  Note that Figure 4.1 shows a block for 
the feedforward processing systems as well, although these are not discussed in this chapter.  
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Figure 4.1: Block diagram of hardware used for investigation of the loudspeaker system identification 
algorithms presented in this chapter.  Note this figure also shows the ‘feedforward processing’ blocks, 
presented in §3.3, and investigated experimentally in chapter 5.  This chapter presents theory and 
experimental results of only the ‘system identification’ block.   

 
 
A photograph of the mounting of the loudspeaker under-test for experimental trials of the system 
identification algorithms presented in this chapter is shown in Figure 4.2.  A detail of this figure is 
shown in Figure 4.3.  The loudspeaker used is a standard ø16mm microspeaker currently available on 
the market.  This is a widely used microspeaker, for reproducing speech and alert-tones in hand-
portable phones.  Its general features and proportions are as shown in Figure 2.1.   
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Figure 4.2: Photograph of mounting of loudspeaker under-test during experimental trials of the system-
identification algorithms presented in this chapter.  

 

Loudspeaker front

Variable
back-cavity jig

ø16mm

 
Figure 4.3:  The loudspeaker is highlighted in the photograph by the broken white ellipse.  The red dot at the 
centre of the speaker is reflected light from the laser vibrometer, used to verify results of the system 
identification.   

The red1 dot visible at the centre of the loudspeaker Figure 4.3 is reflected light from the laser 
vibrometer.  The laser vibrometer was used to verify the values to which the system identification 
algorithms converged.  Signals from the laser vibrometer were not used by the system identification 
algorithms directly.  As per Figure 4.1, the algorithms used only electrical voltage and current signals. 
 

                                                      
1 The dot will of course appear white if a black-and-white printing process was used. 
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The loudspeaker was mounted in a variable back-cavity jig, the stainless-steel and aluminium 
cylindrical structure shown in Figure 4.2.  This provides an acoustically sealed back-cavity for the 
loudspeaker such that it may be modelled as described in §2.1.7.  The total volume of the rear-cavity 
may be easily varied via a travelling piston.  A threaded handle for the piston, as labelled in Figure 
4.2, permits course and fine adjustment of the rear-cavity volume.  This permits direct variation of the 
effective resonance frequency f0.  This proved considerably useful for quick analysis of the tracking 
performance of the system identification algorithms. 
 
Additional photographs of the experimental set-up for evaluation of the system identification 
algorithms are presented in Appendix A.   
  

4.1.3. Software implementation 
The system identification algorithms were implemented on a standard desktop PC, using an Intel 
Pentium II processor, with a clock speed of 266 MHz.  The algorithm was written using standard ANSI 
C functions.  Analogue input/output was facilitated with a standard sound card.  A header file written 
by Antti Vähätalo of Nokia Research Center was used to handle data transfer between the C-program 
and the sound card.  No dedicated audio DSP processor was used.  Despite not using any special, 
dedicated audio DSP processing hardware, no problems with real time performance were found, even 
at the highest sampling rate of 48 kHz.1   
 
No special programming tricks were used in the implementation of the algorithms presented herein.  
Programming was done more or less by direct implementation of the difference equations written in 
the thesis.  For this reason, the C-code used for processing is not presented here, as it does not contain 
any new information from that which is already presented in the equations.  
 
The operation of the algorithm was controlled by a simple graphical user interface. A snapshot of this 
graphical user interface is shown in Figure 4.4. 
 

                                                      
1 Your author was surprised to not have a problem with real-time performance at this highest sampling rate of 

48kHz.  It had generally been assumed that PC’s were not capable of running any type of audio DSP algorithms 
on their own, i.e. without using dedicated audio DSP processors.  That these algorithms were able to run in real 
time without the use of dedicated DSP hardware served as a testament to your author to the advances made in 
the processing capabilities or ordinary desktop PC’s in recent years.  
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Figure 4.4:  User interface for C-programs.  This interface has controls for the system identification algorithm 
presented in this chapter, as well as for the nonlinear distortion compensation algorithm presented in §3.3.7 
and investigated experimentally in §5.2.  The version of the interface shown in this figure is for controlling the 
electrical-current output-error form of the system identification algorithm, presented in §4.2. 

 
Data variables and computation used double floating point precision.  Problems associated with fixed-
point computation were not considered. 
 
Sampling rates of 8 kHz, 16 kHz, and 48 kHz were investigated. Convergence time of the algorithm, 
as measured in seconds, is not appreciably different for the different sample rates.  All of the 
convergence plots presented below were recorded from data processed at 16kHz.   
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4.1.4. Stability triangle 
According to elementary theory of discrete-time signal processing (Oppenheim and Schafer, 1989), an 
IIR filter is inherently stable only if the poles of its z-domain transfer function all lie inside of the unit-
circle of the z-plane.  For a second-order  IIR filter, this criteria may be expressed as three inequalities 
which must all be true: 

( )
( )1

1
1

12

12

2

−>
−−>

<

aa
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 (4.5) 

These criteria are plotted graphically in Figure 4.5 
 

a2

a1
0-2 2

1

-1

12 <a

112 −−> aa

112 −> aa

 
Figure 4.5: Geometric representation of the stability criteria described in (4.5) 

 
The stability triangle was used in early trials of the adaptive IIR algorithm, by assessing the 
truthfulness of the inequalities in (4.5).  If any of these inequalities were found to be untrue, the 
parameters were not updated by the instantaneous gradient estimate.  
 
Although use of the stability triangle in this way did prevent unstable calculation, convergence was 
generally poor.  As discussed below, this was found to be due to the nature of the error surface in ak, 
and not due to instability.   

4.1.5. Tolerance quadrilateral 
In early trials of the electrical-current output-error algorithm, convergence of the ak parameters was, 
erratic, slow, and/or unpredictable.  For some initial values, the parameters would converge rapidly.  
Other initial values lead to erratic updating, eventually forcing the ak values to the edge of the stability 
triangle.  Still other trials showed initial convergence of the parameters toward their optimal values, 
resulting in unstable convergence as they approached the optimum values.   
 
In order to better understand the convergence dynamics, a simulation was made of the a1, a2 error 
surface.  The error was calculated over a range of values of a1, a2 for 4 seconds of measured data on an 
actual loudspeaker.  The resulting error surface is shown in a contour plot in Figure 4.6, and in a 3-D 
surface mesh in Figure 4.7.  Note that the parameter space region over –1 < a2 < 0 is not analysed.  
Although this region is within the stability triangle, it does not correspond to physically realisable 
parameter values, as will  be shown below. 
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It is particularly clear from Figure 4.7 that this error surface does have a single global minimum, 
occurring at around a1 = –1.8, a2 = 0.97.  Thus it does not suffer from the problem of local minima of 
some adaptive IIR filtering cases as described by Johnson and Larimore (1977).  
 
The problematic feature of this error surface is that its gradient is sharp only in the vicinity of the 
global minimum.  As can be seen from the contour plot (Figure 4.6), for much of the a1, a2 parameter 
space the error is around 26~27%, with a very small slope.  As, for the LMS algorithm,  the 
convergence rate is directly proportional to the slope, selecting initial values in this region will lead to 
very slow convergence.  Although a higher convergence parameter could be used to increase the 
convergence rate, this would lead to large parameter spread and potentially unstable convergence as 
the parameters approach the global minimum, where the slope of the error surface is larger.  
 
The solution to this problem has been to use a priori information available about the actual variation 
in a1 and a2.  It was explained in §2.4 above that the loudspeaker’s parameters can be known within 
certain tolerances.  By translating these known tolerances in the physical parameters into a1 and a2, the 
region of the a1, a2 parameter space which must be considered by the adaptive algorithm may be 
reduced to that region of the space wherein the slope of the error surface is not small.   
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Figure 4.6: Contour lines of the error surface, in percent.  The difference in error between each contour line is 
0.1%.   

 
Figure 4.7: Plot of the error surface vs. a1 and a2.   
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It is first necessary to consider how variations in the resonance frequency (normalised to Fs) and 
damping ratio ζ translate to changes in a1 and a2.  In Figure 4.8, lines of constant resonance frequency 
and damping ratio are shown in the a1, a2 parameter space.  As can be seen from this figure, in the 
upper left-hand corner, where the minimum in the error surface occurs, these lines are approximately 
straight.  That these lines are straight permits imposition of frequency and damping tolerance criteria 
by simpler expressions in a1 and a2 than the direct formulae of (2.66).  
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Figure 4.8: Lines of constant resonance frequency (normalised to Fs)  and damping ratio ζ in the a1, a2 
parameter space.  Notice no lines go below a2 = 0, even though this would result in a stable filter.  

 
Imposition of known limits in variations in the resonance frequency and damping ratio restricts the a1 
a2 parameters space which must be searched.  By considering the following limits: 

( )%360%90
%25

0
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+−ζ=ζ
±=

act

act ff
 (4.6) 

the a1, a2 space is reduced to the region shown in Figure 4.9.   
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Figure 4.9: Normalised resonance frequency and damping ratio tolerances of (4.6) in the [a1 ,a2 ]parameter 
space.  [left] complete region of physically realisable [a1, a2] values; [right] focused view around target 
values.  The ‘×’ in both graphs indicates the target value.   

 
As discussed above and can be seen from Figure 4.9, the limits form approximately straight lines in a1, 
a2.  This permits maintaining updated values of a1 and a2 within these limits to be performed by this 
algorithm:  

( )
( )
( )
( ) 0min·21min·10min·21min·1

0max·21max·10max·21max·1

0max·11max·20max·11max·2

0min·11min·20min·11min·2

,if
,if
,if
,if

fafafafa
fafafafa

aaaa
aaaa

+=+<
+=+>

ζ+ζ=ζ+ζ<
ζ+ζ=ζ+ζ>

 (4.7) 

where the terms [ζmin·1 , … , fmin·0 ] are coefficients defining the four lines of a quadrilateral 
approximating the limits in Figure 4.9.   
 

4.1.6. Frame-based updating 
Most audio signal processing uses frame-based processing.  The motivation behind this comes 
primarily from lossy-compression (coding) techniques, referred to as speech or audio coding.  These 
algorithms operate in the frequency domain, and therefore must operate on one frequency-transformed 
frame of time data at a time.  Typical frame lengths are on the order of 20ms, though this can vary 
significantly depending on the application.  
 
Such frame-based processing has no direct theoretical impact on the adaptive algorithm developed 
here.  However, it can be used to reduce the computational overhead required for assessment of the 
tolerance quadrilateral.  It has been found that the estimate of the gradient can be ‘accumulated’ over 
one frame such that  

∑
=

=
frame

kk

N

n
aacca ndjd

1
· ][ˆ][ˆ  (4.8) 

where ][ˆ
· jd accak

 is the gradient estimate accumulated over the jth –frame, and where the frame has 
Nframe samples.  The adapted parameters are then updated according to this accumulated gradient 
according to 

][ˆ][]1[ · jdjaja accaakk kk
µ−=+  (4.9) 
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The advantage of this technique is that the tolerance quadrilateral assessment of (4.7) need be made 
only once for each frame, instead of for each sample.  Although the parameters are updated only once 
per frame (instead of for each sample), due to the stochastic nature of estimation of the gradient in the 
LMS algorithm, the accumulation of the instantaneous estimate of the gradient over the frame length 
results in a more accurate estimate of the gradient for the end-of-frame updating.  The net results is 
that the convergence rate using only end-of-frame updating tends to be about the same as sample-by-
sample updating.  
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4.2. Electrical current output-error form 
The adaptive filter for the electrical current output error plant model structure is shown in Figure 4.10.  
The method for developing this model is the same as used to develop the discrete-time nonlinear 
loudspeaker model presented in §2.3.4.   
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Figure 4.10: Block diagram of electrical current output error (ECOE) plant model structure.  Notice 
that linear and nonlinear components are separated. This diagram shows the inclusion of nonuniform 
force factor and stiffness.  Other parameter nonuniformity, as discussed in §2.2.1, may be included in 
a similar manner, though in some cases require more complicated linear dynamics models, e.g. 
calculation of acceleration.  

 
This plant model calculates a predicted current signal ic·p[n].  An error signal εoei[n] is obtained by 
comparing the predicted current signal with a measured current signal ic·m[n] as so: 

][][][ ·· ninin pcmcoei −=ε  (4.10) 

The predicted current signal is calculated according to the voltage equation of (2.1).  By ignoring the 
effects of the blocked electrical inductance Leb (as discussed towards the end of §2.1.1), the predicted 
current is calculated as per:  

( )( )][][][1][ ·· nunxnv
R

ni ddmc
eb

pc φ−=  (4.11) 

where vc·m[n] is the measured voltage, ud[n], is the diaphragm velocity predicted according to the force 
equation, and other terms are as previously presented.  The diaphragm velocity ud[n] and displacement 
xd[n]are computed according to the ‘linear mechanical model’ in Figure 4.10, incorporating the linear 
second-order dynamics of the mechanical dynamics of a loudspeaker mounted in a closed box, as 
discussed in §2.1.7.  These second-order dynamics are implemented in discrete time using the 
discrete-time models of mobility (presented in §2.3.3) and receptance (presented in §2.3.2) to calculate 
the velocity ud[n] and displacement xd[n], respectively, from the force on the voice-coil fc·p[n].  
Explicitly, they are calculated as per this second-order IIR filter:  

]2[]1[]2[][][ 21·· −−−−−σ−σ= nuanuanfnfnu ddpcupcud  (4.12) 
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where σu is the reference sensitivity for the discrete-time mobility z-domain transfer function defined 
in §2.3.3, a1 and a2 are the feedback coefficients defining the poles of the system as per §2.3.3,1 and 
fc·p[n] is the predicted force on the voice-coil predicted from the electrical current as per:  

( ) ( ) ][][][][][ 1·· nxnxkninxnf ddmcdpc −φ=  (4.13) 

The displacement signal is calculated iteratively from the force using  

]2[]1[]1[][ 21· −−−−−σ= nxanxanfnx ddpcxd  (4.14) 

as defined in §2.3.2, and fc·p[n] is the predicted force as per (4.13).   
 
Notice that the displacement signal xd[n] appears in the expression for the predicted force fc·p[n] and 
vice-versa.  Thus it would at first appear that this equation pair form only an implicit and not explicit 
method for calculating the displacement from the current.  However, notice that the force fc·p[n] 
appears as a delayed sample in the equation for xd[n].  It is thus possible to ‘predict’ the displacement 
one-sample ahead.  This can then be used in the calculation of the next sample of the predicted  
force fc·p[n]. 

Linear case 
The linear case, wherein parameter nonuniformity with respect to displacement is assumed to be 
negligible, is first considered.  If models of the parameter nonuniformity are known, this linear case 
may be defined by the approximations  
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Given the above assumption, the formula for calculating predicted force fc·p[n] in (4.13) simplifies to  

][][ ·0· ninf mcpc φ=  (4.16) 

Combining (4.11) and  (4.12) and assuming the linear case described above, the error is calculated by  
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R
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eb
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where ud[n] is calculated iteratively as per (4.12), and where fc·p[n] is calculated from the measured 
current ic·m[n] as per (4.16). 
 
The LMS algorithm is used to iteratively update the parameters Reb, φ0, a1 and a2 such that the error 
signal εoei[n] is minimised in a mean-square sense.  As explained in §3.5.1, the LMS algorithm uses a 
simple stochastic gradient, determined from the product of the error signal and the derivative of the 
error signal of the parameter to be updated.  As the error signal defined in (4.17) is not of standard FIR 
or IIR form, its derivatives for each of the parameters to be updated are derived for each parameter in a 
separate section below.  

4.2.1. Updating Reb  
The derivative of the error, defined for the linear case in (4.17), with respect to the DC-resistance Reb is 
given by  

                                                      
1 Note that these feedback coefficients are the same as those for the mechanical displacement.  This is because 

the mechanical mobility has the same pole locations as the mechanical receptance. 
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Given that vc·m[n] is a measured value, and that ud [n] is calculated from the measured value ic·m[n] 
without use of Reb, the derivative with respect to Reb is zero.  Therefore, the last term in this equation is 
zero, reducing the partial derivative of the error εeoi[n] with respect to the DC resistance Reb to 

( )][][1][ 02 nunv
R

n
R dc

eb
oei

eb
φ−=ε

∂
∂

 (4.19) 

Notice that the term in parentheses on the RHS of (4.19) is the same as that appearing in the definition 
of the predicted current ic·p[n].  Thus this derivative may be written more compactly as  
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From this the instantaneous estimate of the gradient of the error surface along Reb is given by  
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with which the estimate of the DC-resistance may be updated using the LMS algorithms as so 
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4.2.2. Updating ak 
As noted above, neither the measured current ic·m[n] nor the predicted force fc·p[n] depend on the 
feedback coefficients ak.  Therefore the derivative of the error with respect to ak is that of a standard 
output-error IIR algorithm where the IIR filter concerned is that for the mechanical mobility.  Thus 
generally one has 
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The derivative of the velocity predicted from the force equation ud[n] with respect to the feedback 
coefficients ak is 
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By defining  

][][ nu
a

n d
k

k ∂
∂=α , (4.25) 



 Loudspeaker system identification  115  

 

the derivative of ud[n] with respect to the feedback coefficients ak may be calculated iteratively 
according to 

]2[]1[][][ 21 −α−−α−−−=α nanaknun kkdk . (4.26) 

The instantaneous estimate of the gradient of the error surface along the parameter ak  is therefore 
given by  
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where αk[n] is calculated iteratively as per (4.26).  The ak parameters are updated according to the LMS 
algorithm as so: 

][ˆ][]1[ ndnana
kk aakk µ−=+  (4.28) 

where 
kaµ is a convergence parameter specific to ak.  Summing up explicitly, this is 
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4.2.3. Updating of σu as a feedforward coefficient 
The partial derivative of the error with respect to the overall gain of the mobility is given by  
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The partial derivative of the velocity ud[n] with respect to the overall gain σ0 is  
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The partial derivative of the velocity ud[n] with respect to σ0 may be defined as ][0 nσβ , and calculated 
recursively as so 

]2[]1[]2[][][ 21·· −β−−β−−−=β σσσ nananfnfn
uuu pcpc  (4.32) 

The term σ0 is then updated in the traditional manner as so 
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Attempting to update σu in this manner leads to poor convergence of the parameters in general.  This is 
understood to be a reflection of the fact that σu is not an independent parameter; it is determined 
directly by a2, as explained in §2.3.2, above.  For this reason, a different approach to updating this 
parameter is taken, which is explained in the next section. 

4.2.4. Updating of σu as a dependent variable, defined by a2 
It is shown in §2.3.2 that σu  can be accurately approximated as a third-order polynomial function of a2 
as so 
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Thus σu may be determined from updated values of a2, instead of being updated as an adaptive filter 
coefficient.  Thus its derivtive with respect to the error εoei[n] is not considered. 
 
However, it is important to note that caclualting σu as per (4.34) changes the derivative of the error 
with respect to a2, because σu becomes a function of a2.  To consider how to re-write the derivative of 
the error εoei[n] with respect a2, the derivative of σu is first considered.  With σu defined as (4.34), its 
partial derivative w.r.t a2 is defined as, and calculated by  
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With this definition and method for calculation of the derivative of σu with respect to a2, the derivative 
of the error εoei[n] with respect to a2, originally given in (4.26), becomes 
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We again define ][][ ·22 nuan fd∂∂=α and calculate it recursively as  

( ) ]2[]1[]2[]2[][][ 2221···2 2
−α−−α−−−−−σ∂=α nananunfnfn fdpcpcua  (4.37) 

This value of α2[n] is therefore used in (4.29), instead of that given before in (4.26), for updating a2. 

4.2.5. Partial derivative of εoei[n] with respect to φ0 
The partial derivative of the error εoei[n] with respect to the transduction coefficient φ0 is given by 
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Given the definition of ud[n] in (4.12), its derivative with respect to φ0 is given by  
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This is defined as ][nuφ∂ and calculated recursively as  

( ) ]2[]1[]2[][][ 21·· −∂−−∂−−−σ=∂ φφφ nananinin uumcmcuu . (4.40) 

Therefore, explicitly, the partial derivative of the error εoei[n] with respect to φ0 is  
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where ][nuφ∂  is calculated recursively as per  (4.40).  Therefore the instantaneous estimate of the 
gradient of the error surface along the parameter φ0 is  
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and thus the update equation 
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is given explicitly by  
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4.2.6. Convergence performance  
The convergence performance of the electrical current output error adaptive algorithm has been 
investigated for a variety of signals and initial values.  These are presented in Figure 4.11 - Figure 
4.28,  as per Table 4.1.  

 

Input signal Initial an 
val. 

Time span 
of plots (page) an plots ζ, ω0, Reb, φ0 

plots 
Qtc, Qms, Err 

plots 
Noise, 0-2kHz Upper right 30s p. 118 Figure 4.11 Figure 4.12 Figure 4.13 
Noise, 0-2kHz Upper left 30s p. 119 Figure 4.14 Figure 4.15 Figure 4.16 
Noise, 0-2kHz Lower left 30s p. 120 Figure 4.17 Figure 4.18 Figure 4.19 
Noise, 0-2kHz Lower right 46s p. 121 Figure 4.20 Figure 4.21 Figure 4.22 
Speech, Male Lower left 80s p. 122 Figure 4.23 Figure 4.24 Figure 4.25 
Music Lower left 160s p. 123 Figure 4.26 Figure 4.27 Figure 4.28 

Table 4.1: Figure numbers for different input signals and settings of initial values of an.  

 
 
The convergence performance using white noise is relatively good.  The resonance frequency f0 is 
identified (from an initial guess of at least 20% away from its actual value) in as quickly as two 
seconds.  Identification of the damping ratio ζ is slower, being identified in approximately 10 to 20 
seconds, depending on whether the initial guess is above or below the actual value.  The mechanical 
and total resonance quality values, Qms and Qtc respectively, are determined from the damping ratio ζ, 
and thus also require 10 to 20 seconds to be identified.  One exception to these convergence times is 
the case for which the initial guess of an is in the lower right corner of the tolerance quadrilateral, 
shown in Figure 4.20 - Figure 4.22, on p. 121.  
 
Convergence for the speech and music signals is considerably slower than for the white noise signal. 
As per Figure 4.24, for the speech signal the resonance frequency is identified in about 10 seconds, 
and the damping ratio is identified after 70 seconds.  Approximately the same performance is seen for 
the music signal.  This may be a considerable problem for actual product implementation.  Techniques 
for obtaining faster convergence performance without increasing variance in the converged parameters 
may be a subject of further research. 
 
The accuracy of the values to which the parameters converged, by comparison to values measured 
using other laboratory techniques, is quite good.  Further detail is presented in §4.2.7. 
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Convergence for initial values of a1, a2 in upper-right corner of tolerance quadrilateral 
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Figure 4.11: [left] a1 and a2 vs. time; [right] a1 vs. a2.  
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Figure 4.12: [left, upper]: Damping ratio (ζ); [left, lower]: Resonance Frequency; [right, upper] DC (blocked) 
electrical resistance (Reb); [right, lower]: Transduction coefficient (φ0). 
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Figure 4.13: [left, upper]: Total Q-factor (Qtc); [left, lower]: Mechanical Q-factor; [right]: Percentage error. 
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Convergence for initial values of a1, a2 in upper-left corner of tolerance quadrilateral 
 

0 5 10 15 20 25 30
−1.95

−1.9

−1.85

−1.8

−1.75
Solid: as updated     Broken: Final value

a 1

0 5 10 15 20 25 30
0.9

0.95

1

a 2

Time (seconds)
−1.9 −1.8 −1.7

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

a
1

a 2

x: Final Value

 
Figure 4.14: [left] a1 and a2 vs. time; [right] a1 vs. a2.  
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Figure 4.15: [left, upper]: Damping ratio (ζ); [left, lower]: Resonance Frequency; [right, upper] DC (blocked) 
electrical resistance (Reb); [right, lower]: Transduction coefficient (φ0). 
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Figure 4.16: [left, upper]: Total Q-factor (Qtc); [left, lower]: Mechanical Q-factor; [right]: Percentage error. 
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Convergence for initial values of a1, a2 in lower-left corner of tolerance quadrilateral 
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Figure 4.17: [left] a1 and a2 vs. time; [right] a1 vs. a2. 
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Figure 4.18: [left, upper]: Damping ratio (ζ); [left, lower]: Resonance Frequency; [right, upper] DC (blocked) 
electrical resistance (Reb); [right, lower]: Transduction coefficient (φ0). 
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Figure 4.19: [left, upper]: Total Q-factor (Qtc); [left, lower]: Mechanical Q-factor; [right]: Percentage error. 
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Convergence for initial values of a1, a2 in lower-right corner of tolerance quadrilateral 

Note: time axis is from 0 to 46.5 secs.; previous graphs were from 0 to 30 secs. 
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Figure 4.20: [left] a1 and a2 vs. time; [right] a1 vs. a2.  
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Figure 4.21: [left, upper]: Damping ratio (ζ); [left, lower]: Resonance Frequency; [right, upper] DC (blocked) 
electrical resistance (Reb); [right, lower]: Transduction coefficient (φ0). 
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Figure 4.22: [left, upper]: Total Q-factor (Qtc); [left, lower]: Mechanical Q-factor; [right]: Percentage error. 
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Convergence for initial values of a1, a2 in lower-left corner of tolerance quadrilateral 

Signal: Male speech; speech activity duty cycle: 50%. 
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Figure 4.23: [left] a1 and a2 vs. time; [right] a1 vs. a2.  
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Figure 4.24: [left, upper]: Damping ratio (ζ); [left, lower]: Resonance Frequency; [right, upper] DC (blocked) 
electrical resistance (Reb); [right, lower]: Transduction coefficient (φ0). 
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Figure 4.25: [left, upper]: Total Q-factor (Qtc); [left, lower]: Mechanical Q-factor; [right]: Percentage error. 
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Convergence for initial values of a1, a2 in lower-left corner of tolerance quadrilateral 

Signal: Music1 
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Figure 4.26: [left] a1 and a2 vs. time; [right] a1 vs. a2. 
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Figure 4.27: [left, upper]: Damping ratio (ζ); [left, lower]: Resonance Frequency; [right, upper] DC (blocked) 
electrical resistance (Reb); [right, lower]: Transduction coefficient (φ0). 
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Figure 4.28: [left, upper]: Total Q-factor (Qtc); [left, lower]: Mechanical Q-factor; [right]: Percentage error. 

                                                      
1 The music used was a ‘popular music’ song, artist: DJ Spiller, title: Groovejet, © 2000 Positiva Records.  
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4.2.7. Accuracy of the converged parameters for the current output-error form 
The accuracy of the values to which adaptive algorithm converged has been assessed by comparison 
between frequency response function (FRF) synthesised from the converged parameters, and actual 
measurement of the FRF.   
 
The voltage-to-displacement FRF was measured using a laser displacement vibrometer based on a 
fringe-counter signal decoder.  Further details of the experimental set-up are given in Appendix A.   
This measured FRF is the red curve plotted in Figure 4.29 (magnitude) and in Figure 4.30 (phase). 
 
The same voltage-to-displacement FRF has been synthesised using with the z-transform of (2.86) 
(setting z = sTie ω ), using the values of Reb, φ0, a1, and a2 to which the adaptive algorithm converged.  
This synthesised function is the blue curve plotted in Figure 4.29 (magnitude) and in Figure 4.30 
(phase).  
 
To ensure proper functioning of the prediction of the diaphragm-coil displacement xd[n], the predicted 
displacement was fed to the analogue output of one channel of the processing hardware.  This 
‘predicted’ displacement signal was measured with the same frequency response analyser, and is 
shown as the green curve in Figure 4.29 (magnitude) and in Figure 4.30 (phase).  This predicted signal 
(in green) closely corresponds to the synthesised FRF (in blue), and it is thus concluded that the 
displacement is being predicted correctly.  
 
As can be seen in Figure 4.29 and Figure 4.30, the measured value (in red) deviates from the value 
synthesised from the converged parameters (in blue) at frequencies below 180Hz and at around 
1.7kHz.  The deviation below 180Hz is explained by a small leak in the rear cavity in which the 
microspeaker was mounted.  Below approximately 180Hz, the acoustic stiffness of the rear cavity is 
lost, resulting in a higher receptance sensitivity.  Above 180Hz, acoustic resistance of air flow in the 
leak is high enough to render the leak negligible, and thus the effective acoustic stiffness of the cavity 
appears in the measured receptance functions.  
 
The aberration 1.7kHz is due to a rocking mode present in the microspeaker’s vibration dynamics.  
This is due to the single-suspension construction of the microspeaker, as discussed in  §2.1.  This 
phenomenon is discussed in detail in Appendix D. 
 
The signal used for the FRF measurement was white noise, with a bandwidth of 0 to 2 kHz.  As there is 
no significant spectral content above 2.5kHz, the FRF measurements are very ‘noisy’ above this 
frequency. 
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Figure 4.29: Magnitude of measured receptance (red) vs. synthesised receptance from converged parameter 
values (blue), and measurement of predicted displacement  / voice-coil voltage, where the displacement is 
predicted by the algorithm (green).   
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Figure 4.30: Phase of measured receptance (red) vs. synthesised receptance from converged parameter values 
(blue), and measurement of predicted displacement  / voice-coil voltage, where the displacement is predicted 
by the algorithm (green). 
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4.2.8. Updating φk 
In addition to the determination of parameters defining the linear properties of the loudspeaker, it may 
also be interesting to see whether the nonlinear characteristics of the loudspeaker can be identified.  
Here, the nonlinear property of the loudspeaker considered is the nonuniformity in the transduction 
coefficient, as discussed in §2.2.1 part A.   
 
Following the general strategy presented by Klippel (1999), the approach presented here is to define 
nonuniformity of the transduction coefficient as a polynomial expansion in xd (the diaphragm-coil 
displacement). The derivatives of the coefficients of this polynomial expansion are defined with 
respect to an error signal.  The polynomial coefficients are then iteratively updated using these 
derivatives according to the standard LMS algorithm.  The difference between the presentation here 
and that given by Klippel is that an electrical current output-error signal as per Figure 4.10 is 
considered here, instead of the velocity equation error signal used by Klippel.  
 
An important initial problem to be considered is the derivative of ( )][nxdφ  with respect to φk.  Consider 
the description of φ(x) in §2.2.1, part A, above wherein it is described as an Nφ

th-order polynomial 
expansion in xd[n].   
 
Given that xd[n] depends on φk, the derivative of ( )][nxdφ  with respect to φk is given by 

( ) ][...][][][][ 2
21 nxnxnxnxnx N

d
k

Nd
k

d
k

k
dd

k

φ

φ φ∂
∂φ++

φ∂
∂φ+

φ∂
∂φ+=φ

φ∂
∂

. (4.45) 

The displacement xd[n] is calculated from the measured current ic·m[n], as described in (4.14) and 
(4.13).  This calculation involves the use of ( )][nxdφ .  Therefore we treat xd[n] as a function of φk.  In 
this way, the derivative of the l th-power of xd[n] with respect to φk is  

][][][ 1 nxnlxnx d
k

l
d

l
d

k φ∂
∂=

φ∂
∂ −  (4.46) 

Given the formula for calculating the displacement xd[n] from the measured coil current ic·m[n] in 
(4.14) and (4.13), the derivative of the displacement xd[n] with respect to φk is  

( ) ]2[]1[][]1[][ 21· −
φ∂
∂−−

φ∂
∂−−φ

φ∂
∂σ=

φ∂
∂ nxanxaninxnx d

k
d

k
mcd

k
xd

k
. (4.47) 

By defining this derivative as ][n
dk xφ∂ , it may be calculated recursively as so: 

( ) ]2[]1[]1[]1[][ 21· −∂−−∂−−−φ
φ∂
∂σ=∂ φφφ nananinxn

dkdkdk xxmcd
k

xx . (4.48) 

With this definition the derivative of the l th-power of xd[n] with respect to φk in (4.46) may be 
expressed as 

][][][ 1 nnxlnx
dk x

l
d

l
d

k
φ

− ∂=
φ∂
∂

 (4.49) 

Substituting this expression into in the definition of the derivative of ( )][nxdφ with respect to φk in 
(4.45) gives: 

( ) ∑
φ

=

−
φ φ∂+=φ

φ∂
∂ N

l

l
dlx

k
dd

k
nxlnnxnx

dk
1

1 ][][][][  (4.50) 
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The summation term in (4.50) is in fact ( ) ][][ nxnx dd ∂φ∂ .  An important feature of this summation is 
that it is not specific to k.  Therefore it need be calculated only once, and the same value may be used 
for all of the φk derivatives.  For this reason it is abbreviated as ( )][nxd∂φ  such that (4.50) may be 
expressed as  

( ) ( )][][][][ nxnnxnx dx
k
dd

k
dk

∂φ∂+=φ
φ∂
∂

φ  (4.51) 

This definition makes possible the following explicit recursive formula for ][n
dk xφ∂ : 

( )( ) ]2[]1[]1[]1[]1[]1[][ 21· −∂−−∂−−−∂φ−∂+−σ=∂ φφφφ nananinxnnxn
dkdkdkdk xxmcdx

k
dxx . (4.52) 

The importance of the ‘predictive’ nature of the discrete-time representation of the mechanical 
mobility developed in §2.3.4 is revealed again in (4.52); were it not to be predictive, (4.52) would be 
an implicit, and not an explicit equation. 
 
For convenience, the derivative of ( )][nxdφ  with respect to φk  is abbreviated as ][n

kφφ∂ . 
 
With the above definitions, it is possible to consider the derivative the error εoei[n] with respect to φk. 
The only term in the error which depends on φk  is the velocity term ud[n], and thus: 

( )

( ) ][][][][
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nxn
R

nu

nu
R

nxn

u
eb

m

eb

dm

dm
eb

m

k
eoi
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 φ
φ∂
∂=ε

φ∂
∂

 (4.53) 

The term ][nukφ∂ is the derivative of the velocity ud[n] with respect to φk. It is calculated recursively in 
a manner similar to parametric derivatives of ud, e.g. an described in §4.2.2 , as so: 

( ) ]2[]1[]2[]2[][][][ 21·· −∂−−∂−−−∂−∂σ=∂ φφφφφφφ nananinninn uumcmcuu kkkkk
 (4.54) 

 
 
Summarising concisely, one first calculates for all k  

( ) ∑
φ

=

−φ=∂φ
N

l

l
dld nxlnx

1

1 ][][  

Then for each k, one calculates 

]2[]1[]1[]1[][ 21· −∂−−∂−−−∂σ=∂ φφφφφ nananinn
dkdkkdk xxmcxx  

From which is calculated   
( )][][][][ nxnnxn dx

k
d dkk

∂φ∂+=∂ φφφ  
With which is calculated  

( ) ]2[]1[]2[]2[][][][ 21·· −∂−−∂−−−∂−∂σ=∂ φφφφφφφ nananinninn uumcmcuu kkkkk
 

With which one calculates  
( ) ][][][][][ n
R

nxn
R

nun u
eb

d

eb

d
eoi

k
kk φφφ ∂φ+∂=ε

φ∂
∂  

 
The convergence of values of the coefficients φk using this algorithm was found to be poor.  
Convergence is either unstable or slow (depending on the convergence parameter values), and did not 
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consistently converge to the same values for the same loudspeaker & signal.  At the time of writing it 
was not clear why good convergence could not be achieved.  Further investigation of techniques for 
determining values of φk using this method is suggested as a topic for further research. 
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4.3. Voltage output-error form 
We consider a traditional output error form where an error signal is derived form 

][][][ ·· nvnvn pcmcoev −=ε  (4.55) 

where vc·m[n] is the measured voltage signal, and vc·p[n] is the predicted voltage signal.  A block 
diagram of this form for system identification is shown in Figure 4.31. 
 
  

k1( )xd

Σ ΣΣ
- -

+
+i nc m· [ ] u nd[ ]f nc·p[ ]

x nd[ ]

v nc p· [ ]

v nc m· [ ]

εoev[ ]n

Linear mechanical 
model

φ( )xdφ( )xd

Reb
bdt·0

ΣΣ

Lebz-1

bdt 1·
adt 1·

 
Figure 4.31: Block diagram of the voltage output error form for loudspeaker system identification.  Notice that 
this form of the updating algorithm includes Leb, as per (4.57), below. 

 
The ‘measured’ voltage signal vc·m[n] may be measured, i.e. sampled with an A/D converter.  
Alternatively, if the power amplifier is assumed to be linear and its gain is known, it may be calculated 
from the input signal.   
 
The predicted voltage signal is calculated from  

( ) ][][][][ ·· nunxniRnv ddmcebpc φ+=  (4.56) 

where ic·m[n] is the measured current signal, and ud[n] is the velocity predicted from the force equation.  
The velocity signal ud[n] is iteratively calculated in the same manner as for the current output error, 
defined in Eq. (4.12), above.  As a result, the derivatives of φ0, φk, and a1 and a2 with respect to the 
error for this voltage output-error form are similar as they were for the current output-error form. 
 
It is possible to include the effects of a blocked electrical inductance quite easily.  By making an 
approximate differentiation of the electrical current, the effects of the electrical inductance may be 
included as follows: 

( ) ][][][][][][ ··· nunxninhLniRnv ddmcdtebmcebpc φ+∗+=  (4.57) 

where hdt[n] is the impulse response of a differentiation approximation, as in  (2.84) presented in 
§2.3.4. 
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4.3.1. Parameter updating 

Updating Reb  

][][ · nin
R mcoev

eb
−=ε

∂
∂

 (4.58) 

The Reb estimate is therefore updated by  

][][][]1[ · ninnRnR mcRebeb eb
εµ+=+  (4.59) 

Updating Leb  
The derivative of the error is with respect to Leb is given by  

][][][ · ninhn
L mcdtoev

eb
∗−=ε

∂
∂

 (4.60) 

The Leb estimate is therefore updated by  

][][][][]1[ · ninhnnLnL mcdteovLebeb eb
∗εµ+=+  (4.61) 

 

Updating ak 
As noted above, neither the measured current ic·m[n] nor the predicted force fc·p[n] depend on the 
feedback coefficients ak.  Therefore the derivative of the error with respect to ak is that of a standard 
output-error IIR algorithm where the IIR filter concerned is that for the mechanical mobility.  Thus 
generally one has 
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 (4.62) 

The derivative of the ud·f[n] with respect to the feedback coefficients ak here is the same as for the 
electrical current output error form defined in §4.2.  Thus the instantaneous estimate of the gradient of 
the error surface along the parameter ak  is therefore given by  

][][][][][ˆ
0 nn

a
nnnd k

k

eov
ak

αφε=
∂

ε∂ε−=  (4.63) 

where αk[n] is calculated iteratively as per (4.26).  The ak parameters are updated according to the LMS 
algorithm as so: 

][ˆ][]1[ ndnana
kk aakk µ−=+  (4.64) 

where 
kaµ is a convergence parameter specific to ak.  Summing up explicitly, this is 

][][][]1[ 0 nnnana kakk k
αφεµ−=+  (4.65) 

Updating φ0 
The partial derivative of the error εoev[n] with respect to the transduction coefficient φ0 is given by 
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The derivative of ud·f[n] with respect to φ0 is defined as ][nuφ∂ , and is calculated iteratively as per 
(4.40). Therefore, explicitly, the partial derivative of the error εoev[n] with respect to φ0 is  

][][][ 0·
0

nnun ufdoev φ∂φ−−=ε
φ∂
∂

 (4.67) 

Therefore the instantaneous estimate of the gradient of the error surface along the parameter φ0 is  

( )][][][][ˆ
0·0

nnunnd ufd φφ ∂φ−−ε=  (4.68) 

and thus the update equation 

][ˆ][]1[
0000 ndnn φφµ−φ=+φ  (4.69) 

is given explicitly by  

( )][][][][]1[ 0·00 0
nnunnn ufd φφ ∂φ+εµ−φ=+φ  (4.70) 

Updating φk 
The derivative of the kth coefficient of φ(x) for the voltage output error form is  
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 (4.71) 

where ][n
kφφ∂ and ][nukφ∂ are as defined for the electrical current output error form in §4.2.8.   

 

4.3.2. Convergence performance  
The convergence performance of the electrical current output error adaptive algorithm has been 
investigated for a variety of signals and initial values.  These are presented in Figure 4.32 -Figure 4.46,  
as per Table 4.2.  

 

Input signal Initial an 
val. 

Leb 
adaptation Duration (page) an plots ζ, ω0, Reb, φ0 

plots 
Qtc, Qms, Err 

plots Leb plot 

Noise, 0-2kHz Upper left No 30s p. 133 Figure 4.32 Figure 4.33 Figure 4.34 - 
Noise, 0-2kHz Target Yes 30s p. 134 Figure 4.35 Figure 4.36 - Figure 4.37
Noise, 0-2kHz Lower left Yes 30s p. 135 Figure 4.38 Figure 4.39 Figure 4.40 Figure 4.38
Speech, Male Lower left Yes 142s p. 136 Figure 4.41 Figure 4.42: Figure 4.43 Figure 4.41
Music Lower left Yes 145s p. 137 Figure 4.44 Figure 4.45 Figure 4.46 Figure 4.44

Table 4.2: Figure numbers for different input signals and settings of initial values of an.  

 
The convergence of the voltage output error algorithm is not appreciably different from the electrical 
current output error form.  The resonance frequency tends to converge quickly, and whereas the 



132 Chapter 4 
 

  

damping factor (and the Q-values derived from it) take longer to converge, up to 20 seconds with 
white noise, and up to 60 seconds with speech and music signals.  
 
The additional parameter identified by this form of the algorithm, the blocked electrical inductance 
Leb, converges quite quickly, as shown in Figure 4.37 (left side).  Furthermore, the convergence of Leb 
does not have a significant effect on the value of other converged parameters.  This can be seen from 
the figures on page 134.  At t = 5.64 seconds, the convergence of the Leb is begun.  Other parameters 
had been allowed to converge to their final values, before convergence of Leb was begun.  As can be 
seen in the figures on  page 134, the convergence of Leb does not significantly affect the converged 
values of the other parameters.  This is important, as it indicates that the non-convergence of Leb does 
not cause bias errors in the values to which other parameters converge.   
 
The parameter spread in Leb for the speech and music signals is very large, up to 50% for the music 
signal. This is considered unsatisfactory performance.  Lower spread in the converged value of Leb 

would be needed if speech or music signals are used during parameter determination.  This is 
suggested as a possible subject for further research. 
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Figure 4.32: [left] a1 and a2 vs. time; [right] a1 vs. a2.  
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Figure 4.33: [left, upper]: Damping ratio (ζ); [left, lower]: Resonance Frequency; [right, upper] DC (blocked) 
electrical resistance (Reb); [right, lower]: Transduction coefficient (φ0). 
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Figure 4.34: [left, upper]: Total Q-factor (Qtc); [left, lower]: Mechanical Q-factor; [right]: Percentage error. 
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Effect of including adaptation of Leb on other parameters.  At t= 5.64 seconds, the convergence parameter for 
Leb is set from zero to its regular value.  There is a slight effect on the determined values of ζ and φ0.  [Note 
that Figure 4.37 (bottom left) shows the adapted value of Leb and not Qtc and Qms as in previous figures.] 
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Figure 4.35: [left] a1 and a2 vs. time; [right] a1 vs. a2.  
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Figure 4.36: [left, upper]: Damping ratio (ζ); [left, lower]: Resonance Frequency; [right, upper] DC (blocked) 
electrical resistance (Reb); [right, lower]: Transduction coefficient (φ0). 
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Figure 4.37: [left]: Leb vs. time [right]: Percentage error. 
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Convergence for initial values of a1, a2 in lower-left corner of tolerance quadrilateral. 
Including adaptation of Leb. 
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Figure 4.38: [left] a1 and a2 vs. time; [right] Leb vs. time.  
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Figure 4.39: [left, upper]: Damping ratio (ζ); [left, lower]: Resonance Frequency; [right, upper] DC (blocked) 
electrical resistance (Reb); [right, lower]: Transduction coefficient (φ0). 
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Figure 4.40: [left, upper]: Total Q-factor (Qtc); [left, lower]: Mechanical Q-factor; [right]: Percentage error. 
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Convergence for initial values of a1, a2 in lower-left corner of tolerance quadrilateral 
Signal: Male speech; speech activity duty cycle: 50%. 
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Figure 4.41: : [left] a1 and a2 vs. time; [right] Leb vs. time. 
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Figure 4.42: [left, upper]: Damping ratio (ζ); [left, lower]: Resonance Frequency; [right, upper] DC (blocked) 
electrical resistance (Reb); [right, lower]: Transduction coefficient (φ0). 
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Figure 4.43: [left, upper]: Total Q-factor (Qtc); [left, lower]: Mechanical Q-factor; [right]: Percentage error. 
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Convergence for initial values of a1, a2 in lower-left corner of tolerance quadrilateral 

Signal: Music1 
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Figure 4.44: [left] a1 and a2 vs. time; [right] Leb vs. time.  

0 20 40 60 80 100 120 140

2
4
6
8

10
12
14

zeta (Damping Ratio)

D
am

pi
ng

 R
at

io
 (

%
)

0 20 40 60 80 100 120 140

800

900

1000

1100

1200
Resonance Frequency

f 0 (
H

z)

Time (seconds)

0 20 40 60 80 100 120 140
5

6

7

8

9

10

R
eb

R
es

is
ta

nc
e 

(Ω
)

0 20 40 60 80 100 120 140
0.3

0.4

0.5

0.6

φ
0

N
ew

to
n/

A
m

pe
re

Time (seconds)  
Figure 4.45: [left, upper]: Damping ratio (ζ); [left, lower]: Resonance Frequency; [right, upper] DC (blocked) 
electrical resistance (Reb); [right, lower]: Transduction coefficient (φ0). 
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Figure 4.46: [left, upper]: Total Q-factor (Qtc); [left, lower]: Mechanical Q-factor; [right]: Percentage error. 

 

                                                      
1 The music used was a ‘popular music’ song, artist: DJ Spiller, title: Groovejet, © 2000 Positiva Records.  
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4.4. Displacement equation-error form 
The displacement equation error form is considered as an alternative to the velocity equation error 
form presented by Klippel.  The displacement must be calculated for nonlinear parameter updating in 
Klippel’s form (1999).  Thus it would be simpler to use the displacement signal as the basis of an error 
function outright.   
 

4.4.1. Displacement from the voltage equation 
The displacement is predicted by the voltage equation by isolating and integrating the velocity signal.  
The velocity signal may be predicted by the voltage equation according to: 

( )][][
)(

1][· niRnv
x

nu cebcvd −
φ

=  (4.72) 

This signal is integrated to provide a displacement signal.  

][][][ ·· nunhnx vddtvd ∗
∫

=  (4.73) 

The convolution in (4.73) will be implemented as a difference equation.  Specific details of this 
difference equation directly impact convergence performance of the algorithm, and are thus addressed 
below.  

4.4.2. Displacement from the force equation 
The displacement may be calculated from the force according to the mechanical receptance defined in 
§2.3.2 as per: 
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fdfdpcx

Xpcfd m  (4.74) 

The force fc·p[n] may be calculated from the measured electrical current as so 

( ) ( ) ][][][][][ ··1··· nxnxkninxnf fdfdmcfdpc −φ=  (4.75) 

Again, the importance of the predictive nature of the displacement difference equation (4.74) appears.  
The present sample of the displacement xd·f[n] is calculated from the previous samples of the ‘input’ 
(the force) fc·p[n].  If (4.74) were not ‘predictive,’ it would form with (4.75) an implicit, and not 
explicit, equation pair. 

4.4.3. Error definition 
The error is calculated by the difference between the displacement calculated from the voltage 
equation  and the displacement calculated from the force equation. 
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 (4.76) 

For the linear case, (4.76) reduces to 

]2[]1[]1[]1[][][ ·2·10· −+−+−φσ−−∗
∫

=ε nxanxaninunhn fdfdcxvddteed  (4.77) 

Substituting velocity ud·v[n] with the RHS of (4.72) provides the following explicit difference equation 
for the error: 
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=ε nxanxaniniRnvnhn fdfdcxmcebmcdteed  (4.78) 
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4.4.4. Parameter updating – linear case 

Updating  Reb  
• ic·m[n] and vc·m[n] are input signals, and thus do not depend on Reb 
• xd·f [n] is calculated from the force equation and thus does not depend on Reb  

 
For the purpose of integration, a discrete-time integrator impulse response in the form of an IIR filter, 
using a z-domain transfer function determined according to the bilinear transform: 
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In this case, (4.73) becomes this difference equation: 

][]1[][][ ·1int·1int·0int· nxanubnubnx vdvdvdvd −−+=  (4.80) 

The derivative of the error with respect to Reb is therefore 
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With ud·v[n] defined, for the linear case the derivative of the error with respect to Reb will be 

]1[]1[][][ ·1int·
0

1int·
·

0

0int· −
∂

∂−−
φ

−
φ

−=ε
∂

∂ nx
R

anibnibn
R vd

eb
mcmceed

eb
 (4.82) 

Noting that ebvd Rnx ∂∂ ][· is the same as ebeed Rn ∂ε∂ ][ ,  the partial derivative of the error with respect 
to Reb is calculated recursively by: 
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 (4.83) 

From this the instantaneous estimate of the gradient of the error surface along Reb is given by 

][][][ˆ nnnd
ebeb ReedR ∂εε=  (4.84) 

Thus the LMS algorithm provides the following parameter-update equation  

][][][]1[ nnnRnR
ebeb ReedRebeb ∂εεµ−=+  (4.85) 

 
It is found that this update method does not lead to proper convergence.  Misalignment of Reb 
accumulates in the estimate of xd·v[n], because its estimation is performed by integration of an equation 
containing Reb, i.e. Eqs. (4.72) - (4.80).  This problem is illustrated by simulation, wherein the input 
voltage is white noise.  The results of this simulation are shown in Figure 4.47.  
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Figure 4.47:  LEFT: Displacement predicted from force equation (Green) and from voltage equation (blue);  
UPPER RIGHT: Error; LOWER RIGHT: Updated Reb (blue) and actual value (8.0, in green). 

 
A filtered-error version of the LMS algorithm was investigated as a potential solution to this problem.  
By low-pass filtering the error used to update Reb, this problem can be eliminated.  Convergence 
results using this filtered-error approach are shown in Figure 4.48.  As can be seen in this figure, this 
results in convergence of Reb to its correct value.  However, error in the displacement predicted from 
the voltage xd·v[n] equation accumulates, and does not fade-away after Reb has converged to its proper 
value.  A different approach is still needed.  
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Figure 4.48:  Filtered-error approach to adaptive Reb; LEFT: Displacement predicted from force equation 
(Green) and from voltage equation (blue);  UPPER RIGHT: Error;  LOWER RIGHT: Updated Reb (blue) and actual value 
(8.0, in green). 

 
In order to also eliminate the accumulation of error in xd·v[n], a limited-memory integration 
approximation is used when predicting it from ud·v[n].   This can be done by creating a modified 
integration filter whose z-transform is given by the product between the integrator and a first-order 
high-pass filter, as so: 
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In this way, the displacement determined by the voltage equation becomes  

]2[]1[]2[]1[][][ ·2int·1int·2int··1int··0int·· −−−−−+−+= nxanxanubnubnubnx vdvdvdvdvdvd  (4.87) 

where the coefficients (bint·0 … aint·2) are determined from the inverse z-transform in (4.86).  Thus the 
recursive calculation of the partial derivative of the error with respect to Reb becomes: 
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The LMS algorithm uses this to update the estimate of Reb in the same manner as (4.85).  
 
The convergence performance of Reb using this limited-memory integrator is shown in Figure 4.49.  As 
can be seen, the displacement predicted from the voltage equation does have the accumulated error as 
it did before.  Also, the convergence of Reb is much faster and smoother.   
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Updating  a1, a2 – linear case 
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Given that ic·m[n] is a measured signal, its derivative with respect to ak is zero.  From the definition of 
σx in (2.67), its derivative with respect to a1 is given by  
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and similarly for a2.  As discussed in §2.4,  kt cannot be known a-priori.  It is thus written as 
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where ωz is determined from a1 and a2 as per (2.73).  Therefore (4.89) becomes, for a1 and a2: 
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Using the same principle as the LMS IIR algorithm, the derivative of the error with respect to ak is 
defined as  αk ,  
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With this definition, this derivative may be recursively calculated according to (4.92) as so: 
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and similarly for α2[n].  The instantaneous estimate of the gradient of the error surface along the 
parameter ak  is therefore given by  
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where αk[n] is calculated iteratively as per (4.95).  The ak parameters are updated according to the LMS 
algorithm as so: 
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where 
kaµ is a convergence parameter specific to ak.  Summing up explicitly, this is 
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Updating φ0 – linear case 
The derivative of the error with respect to φ0 is complicated by its presence in the voltage equation.  
Due to the method of integration needed for proper convergence of Reb described in (4.87), the term φ0 
appears ‘buried’ in this difference equation.  Thus the derivative of φ0 with respect to xd·v[n[ is 
considered separately from xd·f[n], which are defined as so: 
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The derivative of the displacement as determined from the voltage equation, ][· nvφ∂ , is considered 
first.  With xd·v[n] as defined in (4.87), the derivative is given by  
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With ud·v[n] as given in (4.72), its derivative with respect to φ0 is given by  
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Note that the RHS of this is the same as 0· ][ φ− nu vd .  The derivative of xd·v[n] with respect to φ0 is 
therefore given by the following recursive calculation 
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The derivative of φ0 with respect to the displacement determined from the force equation is recursively 
determined in a manner similar to the ak coefficients, as so: 
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The derivative of the error is therefore given by 
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resulting in the update equation 
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It is noted that the calculation of the derivative of the error with respect to φ0 is considerably more 
complicated for this displacement equation-error form than it is for either the current or the voltage 
output error form described above.  As this complication will become manifold worse when the 
nonlinear case is concerned, the displacement equation error form has not been pursued further. 
 

4.5. Conclusions regarding system identification 
Three methods are investigated for determination of linear parameters of a loudspeaker.  The methods 
are developed specifically to determine those loudspeaker parameters which are subject to drift, and 
thus cannot be known a priori, as discussed in §2.4.  This is made possible because one of the basic 
parameters of the loudspeaker can the total moving mass be known a priori (because it is not subject 
to drift).  This permits system identification of the loudspeaker using a method that only considers it’s 
electrical characteristics, without the need for a vibration measurement.  
 
The displacement equation error form investigated in §4.4 is considered too complicated, and is thus 
not investigated in full detail.  The electrical current and voltage output error forms, presented in §4.2 
and §4.3 respectively, were both found to be sufficiently simple.  Full investigation of these two 
algorithms is made, including measurements of their convergence performance using signals obtained 
from an actual loudspeaker.  Convergence performance of both algorithms was found to be good for 
white noise signals.  Convergence performance with speech and music signals was found to be 
similarly accurate, but considerably slower.  This slow convergence rate for the speech and music 
signals may prove problematic in some applications.   
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It is possible that other common adaptive algorithms, such as the filtered-X or filtered-error LMS, or 
the recursive-least-squares algorithm, may increase the convergence rate with speech and music 
signals.  This will of course come at the cost of an increase in the algorithm’s complexity.  This may 
be a suitable subject for further research. 
 
Little difference in the convergence performance is found between the electrical current and voltage 
output error forms.  The voltage output error form is slightly simpler than the electrical current output 
error form, and thus seems to have the advantage between the two.     
 
Attempts were made to identify coefficients of a polynomial approximation to the nonuniformity of 
the transduction coefficient.  This is tried with both the electrical current and voltage output error 
forms.  Convergence of the coefficient parameters was found to be erratic.  Further research on this 
subject will be needed if determination of these parameters is deemed necessary.   
 
Parameter determination algorithms have been evaluated only for the case of a loudspeaker mounted 
in a closed box.  More complex acoustic enclosures, such as a vented enclosure, would require a more 
complicated model of the linear dynamics.  For example, in the case of a vented enclosure, an 
additional second-order IIR section would be needed to model the extra pole pair in the linear 
dynamics of the vented box system.  This may also be a suitable subject for further research. 
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5. Applications of active control of a loudspeaker 
Applications of active control for a loudspeaker are presented in this chapter.  In §5.1, applications of 
linear control are presented.  In §5.2, applications of nonlinear control are presented.  
 
The presentation of these applications assumes the active control system is implemented as an 
adaptive feedforward controller, as shown in Figure 1.4, and in more detail in Figure 4.1.  As per these 
figures, the feedforward processor is somewhat separate from the system identification processing 
algorithms. The feedforward processor in this context may be discussed in the same manner as in the 
non-adaptive feedforward control system, with one important difference.  In the adaptive feedforward 
controller, algorithms for feedforward processing must be designed so that they can be easily updated 
from the results of system identification algorithms.  Particular attention has been given to this 
requirement in the development and presentation feedforward processing algorithms in this chapter.  
The algorithms have been designed such that they may updated with parameters from the system 
identification algorithms, without the need for any type of transformation on these parameters.  
 
The linear control applications presented in §5.1 are limited to low-order equalisation.  This is 
straightforward equalisation, for extending the low-frequency response and controlling the total Q-
value of a loudspeaker mounted in a closed box. The focus of discussion in §5.1 is on the digital 
implementation of the equaliser, and how this equaliser can be updated using the parameters of the 
loudspeaker identified by the system identification algorithms presented in Chapter 4. 
 
In §5.2, the use of nonlinear control is considered.  Specifically, it is considered how nonlinear control 
can be used to improve the overall sensitivity of a loudspeaker.  The compromise between reduction of 
coil height and additional amplifier output required for nonlinear distortion compensation is 
investigated.  Results from a series of simulations are presented, showing the net sensitivity of an 
electroacoustic system for different coil heights, at different vibration displacements, including the 
additional output required for nonlinear compensation.  To test the suggestions from these simulations, 
loudspeakers were prepared with shortened voice coil heights.  The simple algorithm for compensation 
of nonlinear distortion, developed in §3.3.7, is used to compensate for nonlinear distortion in these 
shortened-voice-coil-height loudspeakers.  Measurements of the linear frequency response of these 
shortened-voice-coil-height loudspeakers are shown, indicating the small-signal sensitivity increase 
provided by shortening the voice-coil height.  Measurements of nonlinear harmonic distortion, and the 
compensation of this distortion by the nonlinear compensation algorithm developed in §3.3.7 are 
presented. 
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5.1. Linear equalisation 
Perhaps the simplest linear equaliser for a loudspeaker is that for controlling the Q-value and cut-off 
frequency described by Leach (1990).  Leach describes an arrangement wherein the input to the power 
amplifier is processed by a second-order active analogue filter.  The filter provides a band-stop 
characteristic described by the following s-domain transfer function: 
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where Qd  and ωd are the desired Q-value and cut-off frequency, respectively.  
 
A discrete-time version of (5.1) may be derived by mapping the poles and zeros from the s-plane to 
the  z-plane according to the exponential mapping used in §2.3.2, producing 
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The feedforward coefficients are given by  
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where a1 and a2 are the feedback coefficients of a discrete-time model of the loudspeaker, as described 
in §2.3.4.  
 
The feedback coefficients are determined by the desired cut-off frequency and damping factor 
according to 
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The overall system gain σc is chosen to provide unity above the cut-off frequency, and is thus given 
by: 
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5.1.1. Acoustic response with equalisation 
An example of how this filter affects the loudspeaker’s frequency response, for three different filter 
cut-off frequencies, is shown in Figure 5.1.  In this figure, the frequency response of the loudspeaker is 
synthesised from measured small-signal parameters.  The overall Q-value of this loudspeaker (Qtc) is 
about 5.0, typical for a ‘microspeaker’ placed in a small cavity.  Parameters of the equaliser are chosen 
to produce an equalised Q value of 1.0.  The three cut-off frequencies chosen in the equaliser are one 
half (½ ×) the same (1 ×) and twice (2 ×) the original resonance frequency of the loudspeaker. 
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Figure 5.1: Properties of the linear equaliser, for three different cut-off frequencies; UPPER LEFT: equalised 
loudspeaker response (solid), unequalised (broken); LOWER LEFT: response of equaliser; RIGHT: pole-zero plot in z-
plane of equaliser’s transfer function.  The response is shown for settings of the equaliser where the cut-off 
frequency is set to ωd = 0.5 ω0 (top curve), ωd = 1.0 ω0 (middle curve), and ωd = 2 ω0 (bottom curve).   

 
This type of equaliser is particularly useful for the microspeaker (Figure 2.1).  As can be seen in 
Figure 5.1, the un-equalised response of the microspeaker has a very high Q-value.  This is due to the 
low magnetic strength of the microspeaker, relative to other, typical loudspeakers.  This high Q-value 
is typically reduced by introducing some type of acoustic resistance, either to rear of the microspeaker, 
or by a highly damped leak in the rear cavity.  As shown Figure 5.1, this high Q-value can be 
‘damped’ by the equaliser of (5.2).   
 
One reason the equaliser of (5.2) is not commonly used is that the resonance frequency, ω0 in (5.2), is 
subject to manufacturing tolerance and drift, as discussed in §2.4.  As shown in (5.3), the loudspeaker-
dependent coefficients of the equaliser in (5.2) can be determined from the discrete time model of the 
loudspeaker presented in §2.3.4.  The techniques described in chapter 3 can adaptively identify these 
parameters.  Thus, the loudspeaker system identification techniques presented in chapter 3 can tune the 
equaliser to the loudspeaker quite in a straightforward manner.   
 
Note that when the filter cut-off frequency is chosen to be below the loudspeaker’s cut-off frequency, 
the filter gain is positive below the cut-off frequency, and vice versa when the filter’s cut-off 
frequency is above that of the loudspeaker.  This has very important consequences for the variation of 
the displacement response with respect to filter cut-off frequency, as discussed below.  
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5.1.2. Displacement response with equalisation 
An important property of the equaliser defined by (5.2) is its effect on the displacement frequency 
response function.  This effect is plotted in Figure 5.2, for the same values of the equaliser as plotted 
in Figure 5.1.   
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Figure 5.2: Effect on the displacement response on the linear equaliser of (5.2).  Broken: response without 
equaliser; Solid: response with equaliser with ωd = 0.5 ω0 (top curve), ωd = 1.0 ω0 (middle curve), and ωd = 2 
ω0 (bottom curve). 

 
For the case where the cut-off frequency of the equaliser is the same as the loudspeaker’s resonance, 
the peak value of the displacement response is reduced by over 10dB.  This has an important 
consequence on the maximum allowable input voltage.  As discussed in §2.2.1, part B, the 
microspeaker under consideration has a hard displacement limit at 0.35 mm (peak).  From a system-
level standpoint, this represents a limit that cannot be exceeded.  As can be seen in the middle curve of 
Figure 5.2, using the equaliser of (5.2) will increase the headroom by over 10dB.   
 
It may also be possible to adaptively set the cut-off frequency of the equaliser in (5.2).  As can be seen 
for the different cut-off frequencies plotted in Figure 5.2, the peak value of the displacement response 
reduces by 12dB per doubling of the cut-off frequency.  It may be possible to use this effect as a 
‘dynamic displacement limiter.’  Some success has been achieved with similar systems using analogue 
processing (Bjerre, 1993).   A digital implementation using this approach is considered a subject for 
further research.   
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5.2. Compensation of nonlinear distortion 
As explained in other parts of this thesis, compensation of nonlinear distortion in loudspeakers by 
electronic means has been a subject of research for several years.  To date, it has been reasoned by 
much of the loudspeaker industry that the added cost and expense of electronic distortion 
compensation would not be reasonable.  It has been considered that the cost of such systems would be 
much larger than the proper mechanical construction to keep distortion within acceptable limits.   
 
As mentioned in the introduction, it was suggested by Klippel (2000) that a distortion compensation 
system can offer a net benefit to the loudspeaker’s construction.  Specifically, it was suggested by 
Klippel that the distortion caused by non-uniformity in the transduction coefficient (B·l-factor) in an 
‘equal-hung’ voice-coil can be sufficiently compensated over the range of excursions of three-times 
the coil height, with moderate increased output requirement from the amplifier.   
 
Here an ‘equal-hung,’ or ‘equal-height,’ voice-coil, as shown in Figure 5.3, is one which has the same 
height as the magnet gap.  This is in contrast to an over-hung voice-coil, where the voice-coil’s height 
is greater than the magnet gap’s height, or an ‘under-hung’ voice-coil, where the opposite is the case. 

 
Over-hung voice coil

Equal-hung voice coil

Under-hung voice coil

 
Figure 5.3: Coil shapes for over-hung, equal-hung and under-hung voice-coil, as would be implemented in a 
microspeaker. 

 
As discussed in §2.1.5, a loudspeaker’s acoustic output1 is directly determined by its volume 
acceleration.  For a given acoustic output, if the effective diameter of a loudspeaker is halved, the axial 
diaphragm vibration displacement must be increased by a factor of four.  As there is typically 
commercial pressure from product marketing requirements to minimise the overall diameter of a 
loudspeaker, an important aspect of loudspeaker design is its maximum vibration displacement. 
 

                                                      
1 Acoustic output here denotes the pressure-distance product produced by a loudspeaker in free-field (in the 

absence of any acoustically reflecting surfaces.)  
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For the microspeaker (Figure 2.1) the coil mass dominates the total moving mass.1  As explained in 
§2.1.7, the characteristic sensitivity (or system gain) of a loudspeaker is inversely proportional to the 
total moving mass.  By shortening the height of the voice-coil, the total moving mass may be reduced, 
thereby increasing the loudspeaker’s sensitivity.   
 
However, shortening the coil height has a problem.  It will increase nonuniformity in the transduction 
coefficient, thereby increasing nonlinear distortion.  For this reason, loudspeaker designers commonly 
use over- or under-hung voice-coils in high-displacement loudspeakers to keep nonlinear distortion at 
acceptably low levels 
 
From the perspective of loudspeaker optimisation, an over-hung voice-coil is sub-optimal, because it 
requires excess diaphragm mass, reducing its sensitivity.  Conversely, an under-hung voice-coil is a 
sub-optimal design because it requires excess magnet material, which increases the loudspeaker’s 
overall cost and weight.  It is, therefore, considered here that the nonlinear distortion created by 
nonuniformity in the transduction coefficient be compensated electronically.  

 
Electronic compensation of nonlinear distortion does, of course, have its own cost.  The cost is 
measured in this study by the additional amplifier output required for compensation of nonlinear 
distortion, measured in peak amplitude volts.  As mentioned in the introduction, many audio products 
already employ considerable digital signal processing.  It is assumed that the processing needed for 
distortion compensation is simple relative to existing signal processing algorithms.  The cost of the 
hardware needed for performing the processing for distortion compensation is, therefore, not 
considered here. 
 
A series of simulations have been made to find the optimal trade-off between increase in sensitivity 
due to coil height reduction, and increase in amplifier output required for nonlinear distortion 
compensation.  Details of the simulation method are presented in §5.2.1 below, and the results and 
discussion are presented in §5.2.2.  
 
To test the hypothesis that a net benefit is derived from shortening the coil height and compensating 
the resulting nonlinear distortion electronically, a set of special microspeakers have been prepared 
with shortened coil heights.  The simple nonlinear distortion compensation algorithm presented in 
§3.3.7 has been used to compensate for the nonlinear distortion created by the increased nonuniformity 
in the transduction coefficient caused by shortening the coil height.  A set of measurements of 
harmonic distortion of a narrow-band signal to asses the performance of the distortion compensation 
algorithm are presented in §5.2.3.   
 

5.2.1. Simulations of effective sensitivity increase vs. coil height 
As discussed above, the additional amplifier output required for compensation of nonlinear distortion 
generated by nonuniformity in the transduction coefficient has been simulated for a range of coil 
heights, as a function of displacement (excursion) level.  The range of voice coil heights considered is 
from 0.1mm to 2.1mm, as per Figure 5.4.   
 

                                                      
1 The total moving mass mt, defined in (2.34), is the sum of the mass of the diaphragm, voice-coil, and mass-like 

acoustic loading. The diaphragm of a microspeaker, made of thin polycarbonate plastic, has a mass of about 
1mg.  Mass-like acoustic loading on the diaphragm, under atmospheric conditions, is about 1mg.  Depending 
on loudspeaker type, the mass of the coil will be 50 – 100 mg.  
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Figure 5.4: Variation of coil height made in simulations. 

 

Lumped parameter quantities vs. coil height 
 
Changing the coil height directly affects several ‘lumped parameters’ of the loudspeaker: 
• nonuniformity in the transduction coefficient  
• moving mass, md  
• blocked (DC) electrical resistance Reb  
 
Nonuniformity in the transduction coefficient is determined by variation in the magnetic field along 
the coil gap B(x), and by the effective coil height in the gap, according to two different formulae 
presented below.  Data on variation in the magnetic field along the coil gap B(x) was derived from a 
FEM simulation, which is plotted in Figure 5.5.   
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Figure 5.5: Magnetic field strength vs. distance along coil gap, from FEM simulation. 

 
Changes to the force factor profile φ(x) due to changes in the coil height can be interpreted in two 
ways.  We can consider a coil length that varies directly with the coil height, and thus the force factor 
profile is determined from 

ξ−ξ=φ ∫ dxBlx
u

l

h

h
dhd )()( . (5.6) 
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This produces force-factor profiles, for different coil heights, as shown in the upper half of Figure 5.6.  
Alternatively, we can consider a fixed coil length, l0, which is independent of the coil height, and thus 
determined from 
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For different coil heights, this produces force-factor profiles as shown in the lower half of Figure 5.6. 
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Figure 5.6: Determination of force factor profile,  φ(x).  UPPER: Coil wire length proportional to coil height, as 
per  (5.6).  LOWER: Coil wire length fixed, as per  (5.7). 

In order to have a fixed coil length for shorter coil heights, the coil would have to be thicker.  A 
thicker coil would require a wider magnet gap, which would reduce the magnetic field strength, and 
consequently the sensitivity.  Magnet gap widths and coil thicknesses are typically finely optimised.  
Therefore, it has been chosen to study only the case of  (5.6), where the coil length varies linearly with 
the coil height.  
 
The blocked electrical (DC) resistance is, for the simulation, determined according to the coil height by 
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In  (5.8), R0 describes a ‘residual’ resistance, in the output impedance of the amplifier, and the 
electrical connections between the amplifier and the loudspeaker. 
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The mass md has been determined according to the coil height according to. 
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In  (5.9), ma is the effective mass presented by the acoustic load, which is obviously invariant to the 
coil height.  In the loudspeakers under study, it has been found that the mass of the diaphragm is 
significantly less than 1mg.  Consequently, the total effective moving mass md is simply the sum of the 
coil mass and ‘acoustic’ mass. 
 
For these simulations, it was decided to keep the resonance frequency fixed.  The stiffness has 
therefore been varied along with the mass, so as to have a constant resonance frequency, as so: 

( )2
00, 2 fmk dd π=  (5.10) 

The variation in various lumped parameter elements with the coil height used for simulations is shown 
in Figure 5.7.  Attention is drawn to the lower right chart of Figure 5.7, which shows the equivalent 
rear-cabinet volume, VAS.  For the shortest coil heights, and thus the lowest moving mass values, a 
rather low stiffness (high compliance) is necessary to achieve the same f0. This produces significantly 
higher VAS than would be typical for the loudspeaker under study (4cm3 is typical.) 
 
Attention is also drawn to the lower left chart of Figure 5.7.  The shortest coil heights produce a very 
low DC resistance, and thus low Qtc.  The shortest of coil heights produce a Qtc of around 0.3, which is 
perhaps lower than could be thought ideal.  This is shown in the small-signal far-field acoustic-
pressure sensitivities, calculated from the lumped parameter quantities for the different coil heights, 
shown in Figure 5.8. 
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Figure 5.7: Variation in ‘lumped parameter’ quantities with coil height, for purposes of simulation. 

 



154 Chapter 5 
 

 

The linear pressure/voltage frequency response for the different coil heights was calculated according  
(2.35) using the parameter value for different coil heights.  The frequency response all of these coil 
heights are plotted in Figure 5.8. 
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Figure 5.8: Small-signal far-field acoustic pressure sensitivity (referenced to 1m), for LPM quantities 
calculated for the different coil heights. 

 

Effective sensitivity vs. coil height and excursion 
The effective sensitivity, for the combined controller-amplifier-loudspeaker system, has been 
calculated to evaluate the trade-off between the increased sensitivity provided by a shorter height 
voice-coil, and the decrease in sensitivity created by the additional amplifier output required for 
compensation of the distortion generated by shortening the voice coil height.  For the simulation 
herein, the effective sensitivity  Seff has been calculated as a function of excursion, based on the small 
signal sensitivity S0, and the ‘correction gain’ at the specified displacement, Cdisp·n, according to: 
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c
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S =  (5.11) 

The correction Cc gain represents the ratio of the peak value of the controller output u(t) to the peak 
value of the controller input w(t), as per Figure 3.5. 
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This effective sensitivity has been plotted as a function of peak excursion, for the above mentioned 
range of coil heights, for several different frequencies. The results of the simulations are plotted in 
Figure 5.9 - Figure 5.25. The results for each frequency are plotted in a separate figure. 
 
Nonuniformity in the suspension stiffness k(xd) has not been considered in these simulations, as 
measurements of its nonuniformity have shown it to be reasonably uniform.  Simulations are made for 
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excursions up to 2.0mm peak, which would cause the diaphragm-coil assembly to contact the magnet 
or frame, occurring at about 0.35mm, as discussed in §2.2.1, part B.  This effect is not considered in 
the simulations results.  As this results in an effective stiffness k(xd) that is infinite, an infinite 
correction gain would be required to overcome this problem.   

5.2.2. Simulation results 
It can be seen in each of Figure 5.9 - Figure 5.25 that, at small displacements (less then 0.1mm Pk), 
the shortest coil height has the highest effective sensitivity.   
 
There seems to be some ‘critical displacement,’ below which the shorter voice coil heights have a 
higher effective sensitivity, and above which the larger coil heights have a higher effective sensitivity. 
The lower effective sensitivity for the shorter coil heights at higher displacement is due to the higher 
correction gain, defined above (i.e. the additional amplifier output needed to compensate for the 
resulting nonlinear distortion).   
 
At lower frequencies this ‘critical displacement’ occurs at a single, well defined displacement level of 
about 0.8mm Pk, for all of the coil heights.  This is seen for all frequencies up to 633 Hz (plotted in 
Figure 5.9 through Figure 5.14).  This can be understood as the phenomenon occurring below the main 
resonance frequency f0.   
 
At frequencies around the main resonance frequency, this ‘critical displacement’ is not so well 
defined.  From about 825 Hz (plotted in Figure 5.15) through 1816 Hz (plotted in Figure 5.18), the 
peak displacement level above which the larger voice-coil heights have a higher effective sensitivity is 
different for different coil heights.   
 
At higher frequencies, 2000Hz and above (plotted in Figure 5.19 through Figure 5.25), this critical 
displacement is again well defined, occurring at a higher level of about  1.1mm.  
 
From these simulations, it is concluded that a significant increase in sensitivity can be obtained by 
shortening the voice-coil height.  For the motor structure under consideration (i.e. the magnetic field 
variation shown in Figure 5.5), it is concluded that shortening the coil height from 1.2mm to 0.3mm 
should provide a sensitivity increase of about 8dB, when used over the specified displacement range of 
0.35mm Pk.  Furthermore, the additional amplifier output required for compensating the distortion 
resulting from a reduction of the coil height from 1.2mm to 0.3mm should be marginal, i.e. less than 
1dB.   
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 Figure 5.9: 168 Hz Figure 5.10: 221 Hz  
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 Figure 5.11: 287 Hz  Figure 5.12: 374 Hz 
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 Figure 5.13: 487 Hz Figure 5.14: 633 Hz 
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 Figure 5.15: 825 Hz Figure 5.16: 1073 Hz  
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 Figure 5.17: 1397 Hz  Figure 5.18: 1819 Hz 
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 Figure 5.19: 2368 Hz  Figure 5.20: 3083 Hz 
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 Figure 5.21: 4013 Hz Figure 5.22: 5224 Hz 
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 Figure 5.23: 6800 Hz Figure 5.24: 8852 Hz 
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 Figure 5.25: 11523 Hz 
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5.2.3. Distortion compensation on shortened- height voice-coil loudspeakers 
 
In order to verify the simulation results presented in §5.2.2 above, a set of modified coil-height 
loudspeakers was prepared on which measurements were made. The modified coil-height speakers 
were made according to the specification shown in Figure 5.26.  These modified coil-height 
loudspeakers were prepared by Philips Speaker Solutions for the purpose of this research. 
 

Voice Coil Height

1.2 mm

0.8 mm

0.4 mm

0.2 mm

Original Coil Height

Coil Height = 2 × Magnet Gap

Coil Height = Magnet Gap

Coil Height = ½ × Magnet Gap

Plastic insert

Plastic insert

Plastic insert

 

Figure 5.26: Specially prepared microspeakers with shortened coil heights.   

 

Measurements of the linear response 
Measurements of the linear frequency response of these modified coil height loudspeakers are shown 
in Figure 5.27.  Measurements were made according to the set-up described in §A.4 in Appendix A 
(see p. 177.)  The loudspeakers were placed in an acoustically free field.  The loudspeakers were 
mounted in a closed-box, with a rear cavity volume of approximately 2.0cc.  In this way, the acoustic 
environment corresponded as closely as possible to that assumed by (2.36).   
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Figure 5.27: Linear pressure/voltage frequency response of specially prepared shortened-voice coil height 
loudspeakers.  The original specification voice coil height, 1.2mm, is shown in blue for reference. 

 
The acoustic frequency response measurements in Figure 5.27 show that the shorter coil height 
loudspeakers have a higher characteristic sensitivity.  Recall that the characteristic sensitivity, S0 
defines the sensitivity above the resonance frequency, as per (2.36).  As can be seen in Figure 5.27, the 
characteristic sensitivity of the shortest-height voice coil (0.2mm) is approximately 10dB above the 
original-specification voice coil height (1.2mm).   
 
The higher resonance frequency of the shorter-height voice-coil speakers is indicative of the lighter 
mass produced by shortening the voice coil.  As can be seen below the resonance frequency, all 
speakers have roughly the same sensitivity.  As, below resonance, the response is dominated by the 
suspension stiffness, it can be said that the stiffness of all of the samples is roughly the same.  The one 
exception is the 0.8mm voice-coil height sample.  By comparison to the response of the original 
specification 1.2mm height voice coil, the 0.8mm high voice-coil sample has the same resonance 
frequency, but has approximately 3dB higher voltage sensitivity throughout the measured frequency 
range.  This can be attributed to a slightly lower suspension stiffness in the 0.8mm high voice-coil 
sample.  Small deviations in the suspension stiffness from one sample to another are known to occur 
due to manufacturing tolerances, as discussed in §2.4. 
 
The nominal power sensitivity, calculated from the voltage sensitivity, is plotted in Figure 5.28.  This 
nominal power sensitivity has been calculated from the voltage sensitivity according to: 

nebVW Rspsp ·11 )()( =  (5.13) 

where p1W(s) is the nominal power sensitivity, p1V(s) is the voltage sensitivity, and Reb·n is the DC-
resistance of the sample concerned.  
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Figure 5.28: Nominal pressure / power sensitivity for the same loudspeakers for which measurements are 
plotted in Figure 5.27.  This represents the theoretical 1W sensitivity. 

 
The increase in nominal power sensitivity for the 0.2mm high coil is only about 4dB over the original 
1.2mm coil height.  This is due to the lower DC resistance of the 0.2mm high coil (approx.  1.5Ω) 
compared to the 1.2mm high coil (7.2Ω).  The nominal power sensitivity below the resonance 
frequency is somewhat lower for the shorter-height voice coils.  It is expected that this is due to a 
higher effective stiffness in the shorter-height voice coil speakers - an accidental result not caused by 
shortening the voice coil height, but due to manufacturing tolerances. This can be seen in the lower 
voltage sensitivity that the shorter voice-coil height speakers have below the resonance frequency 
shown in Figure 5.27.  With the below-resonance power sensitivity given by  

eb
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ffW

R
S

ssp 02
1

0
)(

φ
=<<  (5.14) 

It is expected that if the effective stiffness were to have been the same for all for loudspeakers, the 
below-resonance power sensitivity would be more similar between them.  
 
In the simulations presented in §5.2.2 above, the suspension stiffness was changed for different coil 
heights, so as to keep the resonance frequency constant.  This was not done in the physically prepared 
samples.  Although it is generally possible to freely adjust the suspension stiffness, by adjusting the 
thickness of the plastic making up the suspension material, this was not done, in order to simplify the 
sample preparation process. 
 

Set-up and parameter tuning 
The distortion compensation algorithm developed in §3.3.7 is used to compensate for nonlinear 
distortion created in the modified coil-height loudspeakers.  Harmonic distortion is assessed with a 
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specially synthesised narrow-band signal.  This signal is synthesised by band-pass filtering white noise 
with 10th-order Chebyshev filters, providing a 30Hz pass-band with high out-of-band cut-off slope.  
This signal was chosen to assess the harmonic distortion created by the loudspeaker with a simple 
measurement of the autopower spectrum of the acoustic pressure field.  This narrow-band noise signal 
was chosen over sinusoidal signals to demonstrate the proper operation of the distortion compensation 
algorithm.  It was considered that this narrow-band noise signal would be a more effective assessment 
of the operation of the distortion compensation algorithm than more commonly used sinusoidal 
signals, as the harmonic distortion created by sinusoidal signals could be compensated for by simple 
harmonic superposition.   
 
For all measurements of the compensation of nonlinear distortion, the input level to the loudspeaker 
was set so that the maximum allowable diaphragm-coil displacement was achieved.  For the 
loudspeakers under investigation here, this was 0.35mm Pk.  This limit is set by the mechanical 
construction of this particular loudspeaker type.1     
 
Parameters of the loudspeaker model were obtained in the following manner.  The effective moving 
mass of the loudspeaker was determined using the method described in Appendix B.  The remaining 
parameters describing the linear characteristics were determined using the system identification 
algorithms presented in chapter 4, above.  Specifically, the electrical current output error form 
described in §4.2 was used.  Parameters were allowed to converge to their final values using a white 
noise signal.   
 
Parameters describing nonlinear characteristics were determined by trial-and-error, tuning φk (the 
coefficients of a polynomial representation of φ(xd) ) by hand.  Values of φk were chosen which 
minimised the harmonic distortion over a range of frequencies of the narrow-band signal.   
 
The commercial instrument discussed in §2.2.1, part A , which can determine φk, though available at 
the time measurements were made, could not be used.  This is due to the fact that at that time the 
commercial system could not analyse loudspeakers with a resonance frequency higher than 800Hz.  
As can be seen from Figure 5.27, the resonance frequency of these loudspeakers is above this limit.   
The values of φk determined by hand compared favourably with those determined by this commercial 
instrument on similar loudspeakers with a resonance frequency lower than 800Hz.  
 
The set-up of the loudspeakers under test was otherwise the same as that for which the linear response 
of the shortened-voice-coil-height loudspeakers was measured, as described above. 

Measurement results 
Harmonic distortion of the narrow-band signal can be seen in measurements of the autopower 
spectrum of the acoustic pressure, shown on the left side of Figures 5.29 through 5.32.   The reduction 
in the harmonic distortion provided by the nonlinear control algorithm in (3.28) is plotted in the same 
figures.  In each of these figures, the solid line shows the spectra with the compensation on, and the 
broken line shows the spectra with the compensation off. 
 
The autopower spectrum of the voltage from the controller to the speaker is shown on the right side of 
of Figures 5.29 through 5.32.  Again, in these figures, the solid line shows the spectra with the 
compensation on, and the broken line shows the spectra with the compensation off.  As can be seen in 
these figures, there is an increase in the ‘harmonics’ of the narrowband signal when the compensation 

                                                      
1 As discussed in §2.2.1, part B, higher displacements than 0.35mm peak cause contact between its diaphragm-

coil assembly and magnet-frame.  Therefore this hard limit could not be exceeded in these measurements. 
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is on.  This represents the ‘anti-distortion’ generated by the nonlinear control algorithm needed to 
compensate for the distortion generated in the loudspeaker.  
 
The harmonic distortion of the narrow band signal generated by each of the different coil-height 
loudspeakers is summarised in Table 5.1.  The percentage-values shown in this table are sum of the 
level of 2nd-4th harmonics relative to the fundamental.  The percentage harmonic distortion, calculated 
in this way, is shown in Table 5.1 for both the compensation on and off.  
  
 

Max % Harm. Dist. Coil height Fig. No. BP sig. 
Cen. Freq. Comp. Off Comp. On 

0.8mm Figure 5.29 800 Hz 5.4 % 1.2 % 
0.4mm Figure 5.30 800 Hz 12.9 % 3.2 % 
0.2mm Figure 5.31 800 Hz 17.8 % 3.2% 
0.2mm Figure 5.32 1200 Hz 3.1% 2.3% 

Table 5.1: Reduction of harmonic distortion for each coil-height.  

 
As can be seen in Table 5.1, the shorter coil-height loudspeakers generate more harmonic distortion;  
the 0.8mm height coil (the highest) shows the least distortion, and the 0.2mm height coil (the shortest) 
shows the most increase in harmonic distortion.  This is as expected, due to the increase in 
nonuniformity of the transduction coefficient caused by decreasing the coil height. 
 
The nonlinear control algorithm was found to reduce the maximum harmonic distortion from at most 
17.8% (in the 0.2mm height coil) to about 3%.  The highest amount of harmonic distortion measured 
with the compensation on was 3.2% (for the same 0.2mm height coil).   
 
The harmonic distortion present in the original-specification height coil (1.2mm) was about 5% for the 
same signal, at the same displacement.  It is concluded, therefore, that the nonlinear control algorithm 
of (3.28) is capable of compensating the distortion caused by the reduction in coil height, at least for 
this narrow-band signal used for these measurements. 
 
The additional voltage needed for compensation of the resulting distortion was at most 10% above the 
voltage level with the compensation off.  This translates to an increase of about 0.85dB.  These 
measurements thus seem to confirm the conclusions drawn from the simulations presented in §5.2.2.  
Specifically, these measurement results seem to confirm the conclusion that reducing the coil height 
from 1.2mm to 0.3mm would result in an 8dB voltage sensitivity increase, and require at most 1dB of 
additional amplifier output for compensation of the resulting distortion.  In measurements, the coil 
height was reduced to 0.2mm, the voltage sensitivity increase was found to be 10dB, and the 
additional amplifier output required for compensation was at most  0.85dB.   
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Figure 5.29: 0.8mm coil height, distortion analysis for NB signal centred on 800Hz.  LEFT: Acoustic pressure; 
RIGHT:  Output voltage from amplifier. 
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Figure 5.30: 0.4mm coil height, distortion analysis for NB signal centred on 800Hz.  LEFT: Acoustic pressure; 
RIGHT:  Output voltage from amplifier. 
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Figure 5.31: 0.2mm coil height, distortion analysis for NB signal centred on 800Hz.  LEFT: Acoustic pressure; 
RIGHT:  Output voltage from amplifier. 
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Figure 5.32: 0.2mm coil height, distortion analysis for NB signal centred on 1200Hz.  LEFT: Acoustic pressure; 
RIGHT:  Output voltage from amplifier. 
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6. Conclusions 
This thesis studies practical implications of applying active control to a loudspeaker.  By developing a 
discrete-time model of the continuous-time loudspeaker dynamics, digital processing for active control 
is made sufficiently simple so that it may be cost-effective to introduce active control to existing 
products.  The adaptive feedforward architecture is found to be the most practical implementation of 
active control.  It is shown that active control can provide a net benefit to the loudspeaker, using both 
linear and nonlinear processing. 
 
A discrete-time model of a loudspeaker is developed in this thesis.  This discrete-time model 
simplifies the digital signal processing algorithms for active control.  The key simplification is derived 
from digital filters designed to have the same response characteristics as dynamics of the loudspeaker.  
Simplicity is enabled by keeping the order of the digital filters the same as the order of dynamics of 
the loudspeaker.   This achieves simplification over previously published algorithms for active control, 
which simulated continuous-time dynamics by numerical integration, or by high-order non-recursive 
filters.   
 
The adaptive feedforward architecture, using digital signal processing, is found to be the most 
practical method for implementing active control of loudspeakers.  Two alternative architectures, 
feedback processing and non-adaptive feedforward processing, are considered impractical.  The 
feedback architecture is discarded due to its need for a direct feedback signal from the loudspeaker, 
which is impractical or expensive to obtain.  The pure feedforward (non-adaptive) architecture is 
discarded due to its sensitivity to misalignment to the loudspeaker.  The adaptive feedforward 
architecture is chosen due to its ability to tune itself to changes in the loudspeaker caused by 
temperature fluctuations and ageing.  Furthermore, it is shown that the adaptive process, performed by 
system identification, can operate effectively using a voice-coil current signal, which is simple and 
inexpensive to obtain from the loudspeaker.   
 
Active control is shown to provide a net benefit to a loudspeaker system.  Standard linear active 
control, or equalisation, enables certain parts of a loudspeaker’s response to be controlled 
electronically.  It is specifically shown that the highly undamped nature of small loudspeakers can be 
controlled by simple equalisation.  The adaptive feedforward architecture for active control, described 
above, ensures the equaliser is properly tuned to the loudspeaker.   
 
Active control is also shown to provide a net benefit through nonlinear processing.  Nonlinear active 
control can correct small nonlinearities introduced by relaxing certain standard loudspeaker design 
requirements. Specifically, shortening the height of a loudspeaker’s voice-coil increases its sensitivity, 
though introduces a certain amount of weak nonlinearity.  Simulations and measurement show that 
this weak nonlinearity can be compensated by active control.  Furthermore, it is shown that the 
additional amplifier voltage output required for compensation of this nonlinearity is less than the 
increase in sensitivity provided by shortening the voice-coil height.  Simulations and measurements 
show this method can provide a net increase in voltage sensitivity up to 9dB, and a power sensitivity 
increase up to 4dB, over existing loudspeaker designs.   
 
Nonlinear active control is assessed in this thesis by its ability to control harmonic distortion.  
Intermodulation distortion – generally considered more important in regard to subjective loudspeaker 
quality – has not been studied.  Subjective tests assessing the performance of the nonlinear distortion 
compensation algorithm have not been carried out either.  It is expected that by reducing harmonic 
distortion at the frequencies concerned, the algorithm would reduce intermodulation distortion by 
consequence.  This has not, however, been verified, and would be a suitable subject of further 
investigation.  Furthermore, it is recommended that some degree of formal subjective evaluation of the 
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nonlinear distortion compensation algorithm be performed before this algorithm is used in a 
commercial product.   
 
Results from all algorithms are from implementations using double-precision floating point 
processing.  Implementation of any of these algorithms in actual commercial products would be done 
using fixed-point arithmetic.  No investigations have been made on the impact of using fixed-point 
arithmetic on these algorithms.  Experience with other algorithms suggests that the most likely 
problem in fixed-point implementation is the proximity of poles in various systems’ transfer functions 
to the unit circle.  This most likely will require 16 bit data input-output streams to be computed with 
32 bit or 40 bit arithmetic.  This kind of architecture has been successfully used in many audio DSP 
applications.  Thus fixed-point considerations for these algorithms are currently thought to be more a 
matter of engineering implementation than further academic research. 
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Appendix A.  Experimental set-up and tuning 
The various experimental set-ups and hardware used through this thesis are presented in this appendix.  
This includes set-ups for primary experiments presented in the thesis, as well as those used in 
‘background research.’  

A.1. Hardware implementation of algorithms 
The algorithms for system identification of the loudspeaker presented in Chapter 4 and the distortion 
compensation algorithm presented in §3.3.7 were written and implemented on a standard desktop PC.  
The algorithms were written in ANSI C, using double-precision floating point arithmetic.  Analogue 
input-output was handled by a standard sound card.   
 
The system identification algorithm developed in §4.2, i.e. the electrical current output error plant 
model form, was used to identify those parameters of the loudspeaker which were known to change.  
These identified parameters were then used in the linear dynamics and inverse dynamics blocks of the 
nonlinear feedforward processor.  A block diagram of the complete system architecture is shown in As 
mentioned in §4.1.2.   

A.2. Electrical impedance measurement 

A.2.1. Differential vs. single-ended considerations 
 
The simplest conceptualisation of the arrangement for using a shunt resistor to measure the electrical 
current is shown in Figure A.1.   
 

i s( )

v sin( )

Rshunt

Zunknown

v sR·shunt( ) v sZ·unknown( )  
Figure A.1: Circuit arrangement for measurement of electrical current and voltage.  Note this arrangement is 
suitable only for differential inputs and outputs. 

 
With this arrangement, the electrical current can be determined from the measured voltage vR·shunt(s) 
according to 

shunt

shuntR

R
sv

si
)(

)( ·=  (A.1) 
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The electrical impedance may, therefore, be determined by 

)(
)(

)(
·

·
· sv

sv
RsZ

shuntR

unknownZ
shuntmease =  (A.2) 

Note that in this arrangement, the ground of the two measured signals, vR·shunt(s) and vZ·unknown(s) are 
different.  Simultaneous measurement of current and voltage in this way will, therefore, require 
differential analogue inputs on the analyser.   
 
If only single-ended inputs are available, it will be necessary to reverse the polarity of the 
measurement of the shunt resistance voltage.  The negative value of Rshunt should consequently be used 
as a calibration value to vR·shunt(s). 
 
In some applications, all output as well as input will be single ended.  This is generally the case if both 
analogue input and output are handled by a standard PC computer sound card.  In this case, the 
arrangement shown in Figure A.2 must be used.   

 
i s( )

Zunknown

v sR·shunt( )

v sZ·1( )v sin( )

Rshunt

 
Figure A.2: Arrangement for measurement of electrical current and voltage with single-ended circuit inputs 
and outputs. 

 
The signals obtained from the arrangement in Figure A.2 must be interpreted somewhat differently 
from those measured according to Figure A.1.  The signal vR·shunt will still give a signal directly 
proportional to the electrical current i(s).  However, the signal vZ·1(s) will provide the voltage drop 
across the unknown load and the shunt resistor.  In this case, the electrical impedance of the unknown 
load may be obtained from the measured signals as so: 

shunt
shuntR

Z
shuntmease R

sv
sv

RsZ −=
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·

1·
·  (A.3) 

A.2.2. Extraneous resistances 
The arrangements for measuring electrical impedance shown in Figure A.1 and Figure A.2 assume 
ideal, zero-resistance contacts and interconnect cables.  In practice, contacts and interconnect cables 
will have some finite resistance.  It was found that, to ensure the accuracy of the displacement 
predicted by the linear dynamics block in Figure 4.1, it was necessary to include the effect of the 
output resistance of the power amplifier, and the resistance of the wires connecting the power 
amplifier to the loudspeaker.  This is due to the generally low impedance of electrodynamic 
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loudspeakers.  A technique for determining these resistances and the values determined are described 
in this section.  
 
Extraneous resistance in the circuit may be considered in two parts: 

• The output resistance from the power amplifier 
• The contact and interconnect resistance between the voltage drop measurement point and that 

point for which the impedance of the device-under-test is defined 
 
These two resistances are represented as Rout and Rlead, respectively, in the circuit in Figure A.3.   
 

i s( )

Zunknown

v sR·shunt( ) v sZ·2( )

Rlead

v sin( )

Rshunt

Rout

 
Figure A.3: Arrangement for measuring electrical impedance, with consideration of amplifier output resistance 
and contact and interconnect resistance.  This arrangement is only suitable for differential inputs. 

 
The first of these, the output resistance from the power amplifier Rout, need not be considered in 
ordinary measurement of the electrical impedance.  It need be known only when is necessary to 
predict the voltage drop across the device under test directly from the input to the power amplifier, as 
is the case in the applications of feedforward control described in the main body of this thesis. 
 
The second of these, the contact and interconnect resistance Rlead, does sometimes need to be 
considered when measuring the electrical impedance.  Typical values of Rlead are between 0.005 and 
0.3 Ω, depending on the interconnect lead wire and the contact type.  As the typical impedance of 
loudspeakers is between 4 and 32Ω, this resistance needs to be accounted for if the electrical of the 
loudspeaker needs to be measured with high absolute accuracy. If this is case, this resistance should be 
determined separately, by e.g. shorting the terminals on the loudspeakers.  With Rlead then known, the 
measured impedance can be corrected according to 

lead
shuntR

Z
shuntmease R

sv
sv

RsZ −=
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·
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·  (A.4) 

The correction according to (A.4) is generally applicable, as the capacitive and inductive components 
of the interconnect cable and contacts will be multiple orders of magnitude below those of an 
electrodynamic loudspeaker. 
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A.2.3. Determination of extraneous resistances with single-ended I/O 
For single-ended input-output systems, it is necessary to determine both the lead and the amplifier 
output resistance.  A circuit showing the elements under consideration is shown in Figure A.4.  Notice 
that in this figure the unknown impedance has been replaced with a known resistance Rload.  

 
i s( )

v sin( )

v sR·shunt( )

v sZ·1( )

Rshunt

R nload [ ]

Rlead

Rout

 
Figure A.4:  Arrangement for measurement of electrical current and voltage with single-ended circuit inputs 
and outputs, with lead and amplifier output resistance considered. 

 
A set of different load impedances, Rload[n] for n = 1 to N, are inserted into the circuit where the 
unknown impedance would be located.  For each Rload[n], the voltage across the shunt resistor vi·n and 
the voltage across all components vZ·I  are measured. 
 
The relationship between these voltages and resistances is given by  

( )shuntloadleadshuntRIZshunt RnRRnvnvR ++= ][][][ ··  (A.5) 

   An error function may be determined from this  
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The partial derivatives of the error function with respect to Rlead and Rshunt lead to two equations.   The 
terms Rlead and Rshunt may be determined by setting these equations to zero, and solving the resulting 
system.  This may be expressed in the following matrix form: 
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Now consider 

( )][][ nRRniv toutcin +=  (A.8) 

where ic[n] is the current through the circuit i(s) for the nth
 value of Rload , and Rt[n] is the sum of Rlead, 

Rshunt, and Rload[n].  Using the results above, the current for the nth
 value of Rload is given by  
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An error function is defined from (A.8) as so: 
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As above, the partial derivatives of this error function are taken with respect to Rout and vin.  This 
produces a set of two equations, which in matrix form are 
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Use of appropriate different values of Rload and the use of (A.11) with measured data permit 
calculation of the output impedance of the amplifier (including cabling) as well as the ‘original’ output 
voltage.  The values shown in Table A.1 have been determined with this method for the experimental 
equipment shown in Figure A.6 - Figure A.9. 
 

Parameter Determined value 
Rlead 0.11981 Ω 
Rshunt 1.0339 Ω 
Rout 0.09493 Ω 
vgen 0.951Vrms 

Table A.1: Typical values of the interconnect cable and contact resistance (Rlead), the shunt resistance (Rshunt), 
and the amplifier output resistance (Rout) 

A.3. Experimental set-up for diaphragm for vibration measurement 
The measurement set-up for measurement of parameters of a single-degree-of-freedom model of an 
electrodynamic loudspeaker is shown in a block diagram in Figure A.5.  Photographs of the test-bench 
are shown in Figure A.6 and Figure A.7.  These photographs are taken from the same equipment as 
shown in Figure 4.1.   
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Figure A.5: Experimental set-up for measurement of parameters of a single-degree-of-freedom model for a 
loudspeaker. 

 
The laser vibrometer used was a commercially available device from Polytec, model OFV 303 sensor 
head with companion OFV 3001 controller.  Signal conditioning and digitisation of the analogue 
signals was performed by an HP E1433A data acquisition card.  Signals were analysed and stored 
using the Cada-x Fourier Monitor software from LMS.  A standard audio constant output-voltage 
power amplifier was used to drive the loudspeaker.  No other special equipment was used. 
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Figure A.6: Photograph of test-bench for the experimental set-up shown in Figure A.5, showing optical sensor 
head, with scanning mirrors, for direct measurement of a loudspeaker.   The measurement is being made in-
air, and thus the vacuum chamber is not present.  
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Figure A.7:  Photograph of the test bench for a variant of the set-up shown in Figure A.5, showing the vacuum 
chamber & pump, used to remove the effects of acoustic loading from the loudspeaker.  The vibration of the 
loudspeaker can be measured in a vacuum by the laser vibrometer by virtue of a transparent window in the 
vacuum chamber. 
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A.4. Experimental set-up for acoustic measurement 
The experimental set-up for measurement of various aspects of the acoustic response of loudspeakers 
described in different parts was as described in this section.   
 
All acoustic measurements were performed in an anechoic chamber.  The loudspeaker was mounted in 
a variable back-volume test jig, and its acoustic response was measured with a standard laboratory 
microphone.  The distance from the loudspeaker to the microphone was 28cm, as in Figure A.8.   
 
A photograph of equipment for signal generation, active control, and signal analysis in a control room 
adjacent to the anechoic room is shown in Figure A.9 
 

Measurement microphone
Loudspeaker, in jig with

variable rear-cavity volume

28cm

Anechoic room at Nokia Research Center,
Tampere, Finland

4.2m wedge tip - wedge tip
80Hz lower cut-ff

 
Figure A.8: Photograph of measurement set-up in anechoic chamber for acoustic measurements. 
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Figure A.9: Photograph of experimental equipment used for acoustic measurement (located in room adjacent 
to anechoic chamber.) 
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Appendix B. Experimental determination loudspeaker parameters 
Classical theory for determination of parameters for loudspeakers is developed from the 1930’s, when  
RMS voltmeters were the most sophisticated instrument available for analysing dynamic systems.  This 
technique, well-known to most electroacousticians, is described in Beranek’s Acoustics (1957) and the 
well-known paper by Thiele (1961).  The essence of the technique is to work out the loudspeaker’s 
parameters from changes in its electrical impedance caused by known changes applied to its 
mechanical load impedance.  In Beranek’s case this is done by applying a known mass to the 
diaphragm, and in Thiele’s case this is done by changing the volume of a sealed enclosure onto which 
the loudspeaker is mounted. 
 
In this dissertation, an unpublished method using an FFT  analyser and laser Doppler vibrometer has 
been used.  Several methods using an FFT analyser have been published (Struck, 1987.)  One method 
using an FFT analyser and a laser vibration sensor has also been published (Monero, 1991).  As the 
technique used in this thesis is different from these previous techniques, and as it has not been 
published elsewhere, it is presented in this appendix.  

B.1. Parameters to be determined 
The six basic parameters governing the loudspeaker’s electrical and mechanical behaviour can be 
determined in two separate stages: 
 
1. Determination of the electrical parameters: Reb, Leb, and φ0. 
2. Determination of the mechanical parameters: md, cd, and kd.  
The fitting of curves can be weighted according the standard deviation of the measured FRF functions.  
The standard deviation can be estimated from the coherence.  

B.2.  Electrical parameter determination (Reb, Leb, and φ0)  
An appropriate equation for determining the electrical parameters Reb, Leb, and φ0 comes from the coil 
voltage equation.  Dividing by the current ic(s) and subtracting the left-hand-side, we have 
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The parameters Reb, Leb, and φ0 can be determined by measuring the two frequency response functions 
(FRF’s) )()( sisu  and )()( sisv , then minimising the left hand side of (B.1) by a least-mean-square 
method. To ease in notation, recalling that s = – iω, we define: 
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With this notation, Yi (fn) is the complex-valued FRF of velocity / current at the frequency fn.  Similarly, 
Ze(fn) is the complex-valued electrical impedance at frequency fn.  Substituting these expressions into  
(B.1), one may define an error function to be minimised is as so:  
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where Nstart and Nstop are the indices to fn giving the beginning and end of the frequency range over 
which the parameters Reb, Leb and φ0 are to be fit.  By taking the partial derivatives of χ2(Reb, Leb, φ0) 
with respect to Reb, Leb, and φ0 and setting each to zero, a linear set of three equations is created as so:   
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Rewriting Eqs. (B.5)-(B.7) into matrix form provides: 

                                                                                                      

{ }
{ }

{ } { }

{ }
{ }

{ } { } { } { }[ ]















+Σ
ωΣ−

Σ
=

















φ















ΣωΣ−Σ
ωΣ−ωΣ

Σ

)(Im)(Im)(Re)(Re
)(Im

)(Re

)()(Im)(Re
)(Im0

)(Re0

0
2

2

nenineni

nen

ne

eb

eb

nininni

ninn

ni

fZfYfZfY
fZ

fZ
L
R

fYfYfY
fY

fYN

 
 (B.8) 

where N is the total number of points over which the summation is made, given by Nstop – Nstart +1.  
The parameters Reb, Leb, and φ0 are determined by multiplying the vector on the right-hand-side of Eq 
(B.8) with the inverse of the matrix on the left-hand-side of (B.8). 
 
The determined parameters are verified by plotting the terms in  (B.1) against each other.  The 
determined electrical resistance Reb is verified by comparing  
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Although the comparison requires a value for φ0, an incorrect value thereof would not mislead one 
when making a comparison of plots of the right and left-hand side of  (B.9).  The determined value of 
Leb is verified by comparing 









φ−=ω−
)(
)(

)(
)(Im 0

?

si
su

si
svL

c

d

c

c
eb  (B.10) 

 



  Experimental determination loudspeaker parameters 181 
 

 

400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

O
hm

s 
(r

es
is

tiv
e)

400 600 800 1000 1200 1400 1600 1800 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
hm

s 
(r

ea
ct

iv
e)

Frequency (Hz)

 
Figure B.1: Verification of Reb (upper) and Leb (lower); in the upper frame, the grey1 trace shows the RHS of 
(B.9), and the solid black trance shows the value Reb fit from this data; in the lower frame, the grey trace 
shows the RHS of (B.10), and the solid black trance shows the value Leb fit from this data 

 
The value of φ0 may be verified by comparing  
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An example of a comparison of the LHS and RHS of this equation is shown in Figure B.2.  The real part 
of this equation is shown in the upper frame of Figure B.2, and the imaginary part in the lower frame. 
 

                                                      
1 On colour print and electronic media, this will appear as a ‘cyan’ or ‘sky-blue’ trace in these figures. 
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Figure B.2: Verification of φ0; the upper frame shows the real part of (B.11), the LHS of which is plotted as a 
solid black trace, and the RHS of which is plotted as a grey1 trace ; the lower frame shows the imaginary part 
of (B.11), again the LHS of which is plotted as a solid black trace, and the RHS of which is plotted as a grey 
trace. 

 

B.3.  Mechanical parameter determination (md, cd, and kd)   
Once the parameter φ0 is determined, the force on the diaphragm can be deduced from the electrical 
current as per (2.12).  The open-circuit mechanical impedance of the loudspeaker can then be known 
from: 

)(
)(
)()( 0 sZ
su
sisZ rm

d

c
mo −φ=  (B.12) 

where Zrm(s) is the mechanical-equivalent acoustic radiation impedance.  The function )()( susi dc can 
be measured directly.  There are various methods for estimating Zrm(s).  Typically, it is estimated by 
analytical models.  It may also be removed, by placing the loudspeaker-under-test in a vacuum.  This 
is what is typically done with microspeakers, as per Figure A.5 and Figure A.7.   The following 
assumes this is the case, i.e. that Zrm(s) = 0.  Thus the error function for the mechanical parameters md, 
cd, and kd is therefore 

∑
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−ω++ω−=χ
stop

start

N

Nn
nmondddnddd fZkicmikcm 22 )(),,(  (B.13) 

The partial derivatives if χ2  with respect to md, cd, and kd are thus: 

                                                      
1 On colour print and electronic media, this will appear as a ‘cyan’ or ‘sky-blue’ trace. 
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Re-writing these into matrix form gives  
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The validity of the determined parameters may be verified by comparing  

)(
?

sZskcsm moddd =++  (B.18) 

where Zmo(s) is derived from the measured FRF’s as per  (B.12).    



184 Appendix B 

 

400 600 800 1000 1200 1400 1600 1800 2000
−0.02

−0.01

0

0.01

0.02
N

/(
m

/s
),

 in
−

ph
as

e

400 600 800 1000 1200 1400 1600 1800 2000

−0.5

0

0.5

N
/(

m
/s

),
 in

−
qu

ad
ra

tu
re

Frequency (Hz)

 
Figure B.3: Open-circuit mechanical impedance estimation; upper frame: real part; lower frame: imaginary 
part.  In both the upper and the lower frames, the solid black trace represents the parameter fit (the LHS of 
(B.18)), and the grey1 trace the measured estimate (the RHS of (B.18) ).  Large frequency dependence in the 
measured estimate is due to phase errors in the measurement, and additional modes in the system.  

 
Complete assessment of the accuracy of fit also requires comparison also of the multiplicative inverse 
of these quantities, i.e. the mobility.  An example of such an assessment is shown in Figure B.4.  

                                                      
1 On colour print and electronic media, this will appear as a ‘cyan’ or ‘sky-blue’ trace. 
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Figure B.4: Mechanical mobility (open-circuit); upper frame: magnitude (log-log plot); lower frame: phase 
(log-frequency plot).  In both the upper and the lower frames, the solid black trace represents the parameter 
fit, and the grey1 trace the measured estimate.   

                                                      
1 On colour print and electronic media, this will appear as a ‘cyan’ or ‘sky-blue’ trace. 
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Figure B.5: Mechanical mobility (open-circuit); real part (upper) and imaginary part (lower).  In both the upper 
and the lower frames, the solid black trace represents the parameter fit and the grey trace the measured 
estimate. 
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Appendix C. Modal analysis of loudspeaker diaphragms 

C.1. Introduction 
The models of loudspeakers presented in chapter 2 consider only single-degree-of-freedom dynamics 
of the loudspeaker diaphragm.  This assumes the diaphragm vibrates as a single rigid structure - a 
valid assumption up to a certain frequency.  Above some frequency, the diaphragm will vibrate in a 
more complex manner.  Just above this frequency up to which the diaphragm may be treated as a 
single rigid structure, the vibration may be efficiently modelled by a collection of vibration modes.  
These are commonly referred to as ‘break-up’ modes of a loudspeaker diaphragm.  These modes may 
be understood as standing waves in the diaphragm structure.  Assuming an equation of motion for the 
diaphragm’s structure can be defined, these modes will be given by the eigenvalues and functions of 
that equation of motion. If the structure is only considered at discrete points, as is the case in FEM 
modelling and experimental modal analysis, the modes will be eigenvectors.  Each eigenvalue and 
eigenvector will add one pole-pair and possibly one zero-pair to an s-domain representation of any 
vibration frequency response function.  Experimental modal analysis is the process of determining 
these pole- and zero-pairs from measured frequency response functions, and subsequently deducing 
properties of an appropriate equation of motion based upon the eigenvalues and eigenfunctions 
defined by these pole- and zero-pairs.  Experimental modal analysis may be used in this way to study 
loudspeaker rocking and ‘break-up’ modes.   
 
There are several practical problems in measuring suitable frequency response functions (FRF’s) on 
loudspeakers for experimental modal analysis.  Standard instruments and techniques for measurement 
of these FRF’s have existed for several decades, as described by Serridge and Licht (1987), Ewins 
(1988), and Bendat and Piersol (1993).  These standard methods have been developed for the study of 
large structures, such as automotive and aerospace frames, buildings, and bridges.  Two problems are 
incurred in trying to scale these standard methods down to the comparatively small loudspeaker 
diaphragm: measurement of the vibration response without excessive mass-loading, and excitation of 
the diaphragm by a point-force.   
 
The first of these problems has been solved by the recently available scanning laser Doppler 
vibrometer (Polytec GmbH, 2002).  The standard instrument for vibration measurement – the inertial 
piezoelectric accelerometer – was too large and heavy for use on loudspeaker diaphragms.  This 
instrument permits point-vibration-velocity measurement on loudspeaker diaphragms with sufficiently 
fine spatial resolution, and without mass-loading the diaphragm. 
 
Vibration excitation of the loudspeaker diaphragm has also remained a problem.  The process for 
determination of eigenvectors (mode shapes) from measured response functions assumes the vibration 
response measurements are referenced to a point excitation force.  On large structures, this can be 
achieved with traditional shaker and referencing the response to a signal from a force transducer 
connected between the shaker and the structure. Such equipment is suitable only for relatively large 
loudspeaker diaphragms.  For small diaphragms, there is no practical means for attaching the force 
transducer to the diaphragm.  In other cases, bending moments are likely to corrupt the signal 
generated by the force transducer due to its large mass relative to the diaphragm.  
 
The obvious alternative is to use the loudspeaker’s own motor structure to excite vibration in the 
diaphragm.  The problem with this is that it does not provide a point-force excitation.  This 
complicates the process of determining the loudspeaker diaphragm’s eigenvectors from the measured 
response functions.  Using the loudspeaker’s own motor structure requires the excitation force to be 



188 Appendix C 
 

 

considered as a distributed force.  Details of this consideration and how it affects the process for 
determining the diaphragm’s eigenvectors are presented in this appendix.  
 
Experimental modal analysis of loudspeaker diaphragms has been studied by other authors.  Bank and 
Hathaway (1981) describe an early laser-based measurement system which avoids the mass-loading 
problem of accelerometers, mentioned above.  Bank and Hathaway used his system to measure 
operational deflection shapes of a typical electrodynamic loudspeaker diaphragm.  They did not 
consider their measurement results in the context of experimental modal analysis.  This was 
considered to some extent by Struck (1990).  Struck to use a laser-measurement system that providing 
a direct dynamic analogue signal proportional to velocity, suitable for frequency-response 
measurement with an FFT analyser.  Struck also seems to be the first to subsequently perform curve-
fitting on the this complex frequency-response data, and showed how perturbation analysis was 
possible by modifying the resulting modal mass and stiffness values.  However, the above mentioned 
problem of a non-point force excitation was not addressed.   Skrodzka and Sek (1998) mention this 
problem in their study of the vibration behaviour of a three-way loudspeaker.  In their analysis, the 
centre point of the low-frequency driver is taken as the point force input. Skrodzka and Sek correctly 
note that the error caused by the single-point excitation can be estimated by making a [coherent] multi-
point excitation in the simulation.  This was not done, however, as the damping factor was the only 
modal parameter of interest to the authors, which can be obtained without knowledge of the driving 
point (i.e. the geometric nature of the excitation force).  The vibration shapes shown by Skrodzka and 
Sek are in fact the operational deflection shapes, as referenced to the input voltage, and not the modal 
shapes of the mechanical systems in the loudspeaker.  A generally similar method was used by 
Døssing et al. (1989) to analyse the vibration characteristics of a loudspeaker enclosure.  

C.2. Modal analysis of structural vibration 
An equation of motion for a structure considered at M discrete-points can be written as  

[ ] )()(2 ssss fxKCM =++  (C.1) 

where the terms in (C.1) are as follows: 
MM ×ℜ∈M  Mass matrix  

MM ×ℜ∈C  Damping (viscous) matrix 
MM ×ℜ∈K  Stiffness matrix 

Ms CC:)( /→/x  Displacement response vector – note each element of this vector is a function of the 
Laplace variable s 

MCCs /→/:)(f  Forcing vector– note each element of this vector is a function of the Laplace 
variable s 

 
Note that if a continuous-space model of the structure is considered, then a continuous displacement 
response function ),( sRxrξ is used instead of the vector x(s), and the mass, damping, and stiffness 
matrices become differential operators.  The forcing vector must, in this case, also be considered as a 
continuously distributed forcing function.  In all discussions below, it is assumed that the structure is 
only considered at discrete-points, and thus the displacement response and forcing term are considered 
as vectors. 
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Generally, the problem to be solved is the prediction of the displacement response vector x(s) given a 
specification of the forcing vector f(s).  The solution can be considered as H(s), a set of M × M transfer 
functions, where the jth, kth such transfer function defines the displacement response at point-j  due to a 
point-force at point-k, i.e.  

)(
)(

)(
sf
sx

sH
k

j
jk =  (C.2) 

where xj(s) is the jth
 element of x(s), and fk(s) is the kth

 element of f(s).  These transfer functions can be 
determined from (C.1) according to 

[ ] )()( 12 ssss fKCMx −++=  (C.3) 

Determination of the transfer function matrix as per (C.3) is complicated by the fact that there is no 
general solution for the inverse of a matrix larger than 4 ×4.  Analysis of models with larger than four 
degrees of freedom will, therefore require numerical evaluation at a specific frequency (value of s), 
and re-inversion of this matrix for each such frequency.  This problem can be overcome by 
determining eigensolutions to this matrix.  The process for doing this is illustrated here for the case 
where the viscous-damping matrix C may be ignored.  With the damping matrix C removed, the 
homogeneous form of (C.1) may be expressed as this Mth-order eigenvalue problem: 

[ ] )()( 21 sss xxKM −=−
 (C.4) 

This eigenvalue problem, given certain conditions, will have M different solutions, each comprising an 
eigenvalue 2

mω and an eigenvector mφ which are referred to as the mth solution, mth
 mode, or mth 

eigenvalue and eigenvector.  These are solutions to (C.4) as so 

[ ] mmm φφKM 21 ω=−
 (C.5) 

As per standard modal analysis theory (Ewins, 1988), the transfer function Hjk(s) may be determined 
from the eigensolutions of (C.5) according to 

∑
= −ω
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kmjm
jk s

sH
1

22
,,)(  (C.6) 

where jm,φ  is the jth element of the mth eigenvector, i.e. the jth element of mφ .   
 
In simulation modal analysis, the eigensolutions ( 2

mω and mφ ) are determined from appropriate 
descriptions of the mass and stiffness matrices, M and K.  In experimental modal analysis, the 
eigensolutions are determined by curve-fitting measured frequency response functions (FRF), i.e. 
measurements of the FRF of the transfer function Hjk(s) in (C.2) and (C.6).  The curve-fitting process 
for determining these modal values from measured FRF’s is described in the next section.                  

C.3. Experimental modal analysis 
As discussed above, in experimental modal analysis, the eigenvalues and eigenvectors are determined 
from measured frequency response functions (FRF’s).  A set of parameters are determined from the 
FRF’s by a curve-fitting process.  Details of various possible curve-fitting techniques are well 
described by Ewins (1988). Given certain conditions, the original eigenvalues and eigenvectors can be 
determined from the parameters determined from the measured FRF’s.  These parameters are:  
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mjk ,α  ‘Modal constant’  
2
mω  Eigenvalue, or ‘undamped natural frequency’ 
mζ  Damping ratio1 

 
These parameters are used to obtain estimates of the measured FRF’s according to: 

∑
= −ω

α
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m m

mjk
jk s

sH
1

22
,)(ˆ  (C.7) 

The parameters are chosen so as to minimise the error between the measured FRF’s and the estimate 
calculated according to the RHS of (C.7).  Notice that in the estimate of the FRF from experimentally 
determined parameters in (C.7) differs from that determined directly from the eigenvectors in (C.6).  
Specifically, the numerator in the fraction on the RHS is determined by the product between two 
elements of the eigenvector in (C.6), and by the modal constant mjk ,α  in (C.7).  In order to work out 
elements of the eigenvector from the results from the curve-fitting process on the measured FRF’s it is 
necessary to have measured the response at the same point at which the force was applied.  If this has 
been done, then one may interpret the modal constant for all modes this FRF as follows: 

2
,, mkmkk φ=α  (C.8) 

With this parameter available, it is possible to calculate the elements of the eigenvector from the 
modal constant according to 

mkk

mjk
mj

,

,
,

α

α
=φ  (C.9) 

C.4. Interpretation of modal analysis on loudspeakers 
As mentioned in the introduction to this appendix, the only practical method for vibration excitation in 
small loudspeakers is to use the loudspeaker’s own motor structure.  This changes the interpretation of 
the results from the curve-fit parameters and the process for working out the original the eigenvectors.  
Details and theoretical aspects of measuring FRF’ on a loudspeaker diaphragm are presented first.   

C.4.1. Measuring structural FRF’s on loudspeakers 
By using the loudspeaker’s own motor structure to excite the diaphragm, a distributed force, instead of 
a point force, is applied to the diaphragm.  It is generally not possible to measure this distributed force 
directly, as there is no practical method of inserting a force transducer between the voice coil and the 
diaphragm.  Instead, the force must be indirectly deduced by measurement of the voice coil current. 
As per (2.12), the force on the voice coil is given by the electrical current according to 

)()( 0 tisf cc φ=  (C.10) 

The voltage drop across a shunt resistor can be used to measure the electrical current, as per  
Figure A.1.   

The vibration response of the loudspeaker diaphragm can be measured with a scanning laser Doppler 
vibrometer, as shown in Figure A.5 and Figure A.6, presented in §A.3.  As described in that section, 
this instrument provides a signal proportional to the velocity of the diaphragm.   

                                                      
1 The damping ratio ζm assumes a viscous damping mechanism in the model.  This was not considered in the 

theoretical presentation of eigensolutions in § C.2. 
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Receptance (displacement/force) FRF’s are needed for determination of the modal parameters as per 
(C.7).  These may be calculated from the FRF’s measured with the system shown in Figure A.5 
according to 

0

)(
)(

φ
=

s
sY

sH ji
jc  (C.11) 

where: 

Hjc(s)  receptance FRF; displacement at point j due to force from voice-coil. 
Yji(s) FRF of velocity at point j due to voice-coil current ic(s).  
φ0 transduction coefficient of loudspeaker motor (B·l product, ‘force factor’) 
s Laplace variable 
 
The reasoning for the choice of notation Hjc for the receptance FRF is explained below. 

C.4.2. Interpretation of curve-fit parameters 
The distributed force presented by the voice-coil requires measured FRFs to be interpreted differently 
from how they are in traditional modal analysis.   
 
Measured structural FRFs are usually noted as Hjk where j indicates the point at which the response has 
been measured, and k indicates the point at which the structure was excited.  When the loudspeaker 
diaphragm is excited by the loudspeaker’s own motor structure, the response must be considered as 
that not due to force at a single point k, but a force distributed over a set of points.  This set of points is 
the circle forming the junction between the voice-coil and the diaphragm.  These points are given the 
notation c, a vector with Nc elements, and defined described as ‘the set of points on the coil,’ as so: 

[ ]
c

c Nppp ,...,, 21=&          (C.12) 

where pn is the nth
 point on the coil.  The FRFs measured on the loudspeaker diaphragm are therefore 

given the notation: 
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where )(sf
np  is the point-force at the point pn.  According to (C.10), this force can be determined from 

the measured voice-coil current according to: 

)()( 0 si
N

sf cpn
c

φ
=  (C.14) 

The modal parameters extracted from the measured receptance functions Hjc(ω) have a different 
interpretation than in traditional modal analysis.  The notation convention for the modal constant αjk,m 
uses the first sub-script to indicate the response point (j) and the second sub-script to indicate the 
excitation point (k).  Thus for the loudspeaker case we write the modal constants as αjc,m., where the 
second sub-script c indicates an average over the set of coil points given in  (C.12).  The natural 
frequency, ωm, and the damping ratio, ζm, are not affected by the circular distribution of force, and 
therefore in this case have the same interpretation as traditional modal analysis.  Thus the estimated 
FRFs are given by  
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= ωωζ+ω−ω
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c  (C.15) 
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As the FRFs are derived from the product between the eigenvector (or eigenfunction for continuous 
systems) evaluated at the excitation point and the response point, according to the discussion above, it 
is necessary to create an average of the eigenvector over the coil points.  Such an eigenvector is 
defined in a manner similar to  (C.13),  
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 (C.16) 

The mode vector φc,m is simply the average of the mode shape vector for mode m at the coil points, 
defined in set c in  (C.12). This is the coil-force contribution factor for mode number m.    

 
With the definition of φc,m in  (C.16), the modal interpretation of the measured functions Hjc(ω) is 
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The driving point measurement for a loudspeaker is affected by the distributed excitation force in a 
manner similar to the modal parameter extraction.  A driving point measurement is that for which the 
response is measured at the same point as the excitation.  This enables recovery of the structures mode 
shape functions from the curve-fit parameters.  For the loudspeaker case, given that the force is 
distributed, a distributed response is evaluated for the driving point measurement.   
 
Summing the modal parameters at the coil points c defined in (C.12) and dividing by the number of 
number of coil points provides: 
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 (C.18) 

According to the modal model, the eigenvectors (mass- and unity-normalised) are related to the modal 
constant defined in  (C.18) by: 
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 (C.19) permits determination of the system’s eigenvectors according to both normalisation schemes.  
With determination of the unity-normalised eigenvectors and adoption of a well-defined unity 
normalisation convention, specification of generalised modal mass, damping and stiffness is possible.  
The mass-normalised eigenvectors φn,m  are determined by  
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Determination of the unity-normalised eigenvectors ψn,m requires adoption of a convention regarding 
what ‘unity’ is.  The mean-axial coil motion is adopted in this work.  This normalisation has been 
adopted for these two reasons: 
• Compatibility with lumped-parameter modelling conventions. 
• Simplicity in coupling to the electrical domain. 
The mean-axial coil motion unity normalisation convention requires that the unity-normalised 
eigenvectors ψn,m be unity when averaged over the set of points on the coil, c.  This is defined by:  
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With this definition, the modal mass may be determined from the drive-point modal parameter αcc 
according to  (C.19).  

m
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=   (C.22) 

With the modal-mass definition in  (C.22), the unity-normalised eigenvectors can be determined from 
the modal parameters according to 
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C.4.3. Differential vs. single-ended considerations 
A lumped parameter mechanical model which is equivalent to the modal model , when driven by the 
voice-coil, can be derived.  The lumped parameter modal treats the voice-coil as a lumped mass.  With 
such a definition, it becomes identical to the drive point measurement, which is given by the 
generalised modal mass, damping, and stiffness: 
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The modal mass mm is given by (C.22).  The modal damping cm is given by  

mmmmc ,ccαωζ=  (C.25) 

The modal stiffness km is given by  

mmmk ,
2

ccαω=  (C.26) 

An electrical circuit can be constructed which is equivalent to the modal model of the diaphragm.  An 
example showing an electrical analogy of a modal model with three modes is shown in Figure C.1.  
This analogous electrical circuit illustrates how the mechanical modes couple to the electrical and 
acoustical domains.   

 

 
Figure C.1: Equivalent circuit representation of a modal model of a loudspeaker diaphragm.  This circuit is 
equivalent to a modal model which contains three (3) modes. 
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For each mode in the mechanical modal model, there is an analogous current loop in the electrical 
circuit.  Each current loop corresponds to one mode in the modal model.  For each current loop m, 
there is an inductor Lm, resistor Rm, and capacitor (condenser) Cm, and an effective acoustic radiating 
area Sm.    
 
The inductor Lm simulates the behaviour of the modal mass mm, and is thus given by  

mmL ,1 ccα=  (C.27) 

The resistor Rm simulates the modal damping for each mode m, and is thus given by  

mmmmm cR ,ccαωζ==  (C.28) 

The capacitor (condenser) Cm simulates the modal stiffness for each mode m, which is  

( ) 2
,

1
mmmm kC ωα== −

cc  (C.29) 

The effective acoustic radiating area Sm is given by the product of mean-value of the unity-normalised 
eigenvector for mode m and the total area which is covered by the eigenvector, S0.   

∑
=

ψ=
N

n
mnm N

SS
1

,
0  (C.30) 

In  (C.30), N is the total number of elements of the eigenvector ψn,m.  Determination of the total area 
covered by the eigenvector S0 requires analysis of the geometry corresponding to the eigenvector. 

C.5. Summary 
Experimental techniques for obtaining FRF’s from loudspeaker diaphragms suitable for modal analysis 
are reviewed.  A method for interpreting modal analysis results when the loudspeaker’s own motor 
structure is used for force excitation is presented.  Methods for interpreting these results in terms of 
traditional lumped-parameter (equivalent electrical circuit) models are presented. 
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Appendix D. Rocking modes in single-suspension loudspeakers 

D.1. Introduction 
This appendix discusses the problem of rocking modes in single suspension loudspeakers, develops a 
theoretical model of rocking modes, and describes a method for measuring rocking modes 
experimentally.  Rocking modes are problematic in single-suspension loudspeakers because their 
rotational vibration is not impeded by a spider, as in traditional loudspeakers.  The basic construction 
principle of a single-suspension loudspeaker is contrasted with a traditional electrodynamic direct-
radiating loudspeaker in Figure D.1. 
 

 

Figure D.1: Single-suspension loudspeaker vs. traditional electrodynamic direct radiator loudspeaker. 

The current work is motivated by a study of loudspeakers used in hand-held mobile phones.  However, 
single-suspension loudspeakers are found in other incarnations of electrodynamic loudspeakers, such 
as horn compression drivers and dome tweeters. 
 
In Chapter 4, Section 7, of McLachlan's book 'Loud Speakers,' the subject of the various rigid-body 
modes of vibration are considered.  McLachlan studies the rigid body modes by analogy to a two-
dimensional mechanical system of a lumped mass supported by two membranes.  Using this model, 
McLachlan predicts the natural frequency of the rocking mode (‘wobble’ in MacLachlan’s text) to 
occur at a frequency relative to the fundamental mode of vibration of ds mm3 or ‘about twice’ as 
written by McLachlan (1934).  In the preceding section of MacLachlan’s book, the construction of 
‘centring devices’ is introduced.  The ‘centring device,’ nowadays referred to as a ‘spider,’ is 
explained by McLachlan to ‘preserve axial motion of the coil, thereby eliminating wobble…’   
 
It is interesting to notice the absence of a discussion on spiders (or ‘centring devices’) in other classic 
texts on Loudspeakers e.g. Beranek (1954), Hunt (1954), and Olson (1957).  The actual author’s 
deduction from this absence is that during the 20 years between MacLachlan’s and the other classic 
texts, the necessity of a spider to the operation of loudspeaker became widely accepted.  To imagine a 
direct radiator loudspeaker without a spider would be as unthinkable as an automobile without brakes.  
 
One may view, therefore, the renewed popularity of loudspeakers without spiders as at worst a step 
backwards in technology, and at best a venture into known dangerous waters.  

D.2. Low frequency modes of vibration of a single suspension loudspeaker  
As stated in the introduction, in a single-suspension loudspeaker, diaphragm rocking, or ‘wobble,’ will 
occur at approximately 1.5 ~ 2 times the fundamental resonance frequency.  A theoretical model of the 
rocking modes can be developed using rigid body mechanics.  The first step in this process is to 
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establish the interaction between translational and rotational modes of vibration.  The second step is to 
describe this interaction in terms of the physical characteristics of a loudspeaker. 

D.2.1. Translational vs. rotational modes of vibration 
To understand the behaviour of rocking modes, it is necessary to be familiar with the difference 
between rotational and transitional motion.  We may describe the in-plane motion of a lumped mass-
spring damper system as shown in Figure D.2 with a linear, translational component of motion x(t), 
and a rotational component motion θ(t).  
 

 

Figure D.2: Linear (translational) and rotational in-plane modes of vibration. 

From Tse et al. (1978), the equations of motion of this system in matrix form are 
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Attention here is drawn to the off-diagonal coupling terms in the stiffness matrix in  (D.1), which are 
both –(L1k1-L2k2).  The distances  L1 and L2 are the those between the mass’ centre of gravity and the 
springs k1 and k2 respectively.  If L1k1=L2k2, then a force applied in the +x direction will produce only a 
linear, translational deflection.  Conversely, if a torque, or moment, is applied at exactly the centre of 
gravity, it will produce only a rotational deflection.  However, if L1k1 ≠ L2k2, force applied to the centre 
of gravity will produce rotational in addition to linear deflection and vice versa for a torque, or 
moment, applied at the centre of gravity. 

 
 
 

Herein lies a key to understanding the problem of rocking modes in loudspeakers.  Although the motor 
unit of a loudspeaker produces no torque or direct moment on the diaphragm, an asymmetric 
diaphragm stiffness or an off-balance drive position will cause a moment to be imposed on mass of the 
diaphragm. 

 
It should be noted that the coupling terms between the equations of motion are characteristic of the 
choice of co-ordinate system, chosen here for convenience.  The diaphragm will vibrate in its own 
natural manner, independent of the co-ordinate system.  Note also that coupling between the equations 
of motion is not equivalent to coupling between the natural modes of vibration, which is a different 
property of the diaphragm. A good discussion of this technique is available in Tse et al.  

D.2.2. ‘Rocking’ modes of diaphragm vibration 
By extending the model developed above to two dimension, we can develop a model for the rocking of 
a diaphragm coil on its suspension.  We consider the linear, translational, or ‘axial’ mode of vibration 
along the z-axis and two rotational modes of  
vibration, one about the x-axis and the other about the y-axis.  This is shown diagrammatically in 
Figure D.3 
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Figure D.3: Diagram of rocking modes in a single-suspension loudspeaker diaphragm. 

 
For the speakers under investigation in this paper, the diaphragm is constructed of very thin plastic.  
This makes  the diaphragm mass much smaller than that of the coil.  Therefore only the inertial 
component of the coil mass is considered in the mechanical dynamics.  The effective mass moment of 
inertia of the coil about the x- and y-axes is assumed to be that of a hollow cylinder 

( )22
2

2
112

1 33 hrrmJ ++=  (D.2) 

This assumption does not limit other aspects of the current study of single-suspension loudspeakers, as 
they are valid for other distributions of the mass moment of inertia.  

 
Ideally, the two rocking modes about θx and θy are degenerate.   That is, they occur at the same 
frequency, and their mode-shapes are identical, except for a right-angle difference between them.  In 
experimental modal analysis, they will appear as one mode; it is not possible to distinguish between 
them unless the structure is excited in more than one location.  This is generally not possible to do on 
small loudspeaker diaphragms.  In some cases, however, if the material stiffness is not completely 
isotropic, these normally degenerate modes will ‘split,’ i.e. occur at different frequencies.  This 
property can be used to determine anisotropy the membrane stiffness (Larsson, 1997). 
 
In general, rocking modes are more problematic in telecom-type speakers than most incarnations of 
single-suspension speakers for consumer or commercial music reproduction or public address such as 
dome-tweeters.  This is due to the use of ferro-fluids in the air gap, which provide a high degree of 
damping for the rocking modes. 

 
We consider the suspension between the coil and mounting edge to have a stiffness distribution 
dependent upon the angle around the coil, α.  This dependence of the suspension on this angle is 
represented as a stiffness distribution function )(ασ .  Any stiffness distribution around the coil can be 
represented by a Fourier series of sinusoidal functions around the angle α: 

( )∑
∞

=

φ+ασ=ασ
0

cos)(
n

nn n  (D.3) 

It will be shown that the dominant features of rocking modes can be described with only the first three 
terms of the series in  (D.3), so that 

)2cos()cos()( 22110 φ+ασ+φ+ασ+σ=ασ  (D.4) 

For example, the stiffness distributions for σ0=500N/m2, σ1=σ2=150N/m2, φ1=φ2=0 are shown in 
Figure D.4.  The dimension of the distribution functions are N/m2, for stiffness per unit length along 
the diameter path.   
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Figure D.4: Stiffness distributions for given values of σ. 

 
The equations of motion for the three degrees of freedom may be represented in matrix form as  
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where the notation has the following definitions: 
s The Laplace variable. s= iω,  1−=i , ω = 2πf,  f = frequency in Hz. 
φ0 Transduction coefficient. 
m The lumped mass of the diaphragm, excluding the effects of any air loading. 
Jx The mass moment of inertia of the diaphragm about the x-axis. 
Jy The mass moment of inertia of the diaphragm about the y-axis. 
kz Stiffness of the membrane (= 1/compliance), excluding any ‘air cushion’ on which the 

loudspeaker is mounted,  
  opposing linear (axial) motion of the diaphragm.  

x
kθ  Rotational stiffness of the membrane about the x-axis. 

y
kθ  Rotational stiffness of the membrane about the y-axis. 

xzk θ  Coupling stiffness between translational motion along the z-axis, and rotational motion about 
the x-axis. 

yzk θ  Coupling stiffness between translational motion along the z-axis, and rotational motion about 

the y-axis. 

yx
k θθ  Coupling stiffness between rotational motion about the x-axis and rotational motion about the y-

axis. 
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All of the terms in the stiffness matrix in  (D.5) and described above can be derived from the stiffness 
distribution function in  (D.4).  The terms are derived using the same strategy as the stiffness terms for 
the simple mass-and-spring system described in  (D.1).  However, because the stiffness is 
continuously distributed along the diaphragm’s edge, the stiffness terms must be determined by 
integrals instead of sums.  
 
The first stiffness term to be defined is that opposing linear (axial) motion of the diaphragm.  This 
term is equal to the inverse of the mechanical compliance of the diaphragm:  

MDz Cdk 12)( 0

2

0

=πσ=αασ= ∫
π

 (D.6) 

Rotational stiffness is in general defined as the integral of the product between a stiffness distribution 
and the square of a distance function, giving the distance between the stiffness and the axis of rotation. 

∫=θ x
dxk )()( ondistributi stiffnessdistance stiffness  toaxis 2  (D.7) 

For the loudspeaker, we want to integrate around the path of the diaphragm edge, where the stiffness is 
defined by the stiffness distribution function in  (D.4).  The distance between the x-axis and the 
stiffness may be defined in terms of the angle α, as shown in Figure D.4, according to r·sin(α).  
Therefore the rotational stiffness is defined as 
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The same technique can be applied to determine the rotational stiffness about the y-axis  
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The coupling terms are defined in the same manner as a  (D.1), except again using integrals.  
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The coupling term between the two rotational modes is similarly defined: 
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From the foregoing analysis, the impact of the terms in the stiffness distribution of  (D.4) can be 
qualitatively described.   

σ0 Fundamental resonance frequencies 

σ1 Coupling between translational (axial) and rotational modes. 

σ2 Splitting of frequencies of x-axis and y-axis rotational modes; coupling between rotational 
modes  
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D.3. Eigenvalue analysis 
Traditional eigenvalue analysis of equations in  (D.5) is straightforward.  This system has three 
eigenvalues, 2

mω  (for m = 1 to 3), and a 3 × 3 eigenvector matrix Ψ, for which the mth
 column of Ψ 

corresponds to eigenvalue 2
mω .  

 
If the off-diagonal terms of K in  (D.5) are zero, there will be no coupling between translational and 
rotational degrees of freedom.   This will be reflected in Ψ; which will also be diagonal.  If off-
diagonal terms are introduced to K,  
 
We may look at Ψ by analysing linear motion on the +z direction caused by small angular oscillations.  
Thus we analyse modified eigenvectors  
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D.4. Problems with rocking modes 

D.4.1. Mechanical tolerances 
The magnitude of coil rocking can be sufficiently large to cause contact between the coil and/or 
diaphragm and the magnet assembly, as shown in Figure D.5.  Contact between the coil and/or 
diaphragm and the magnet assembly will produce unacceptably high distortion.  It may also cause 
damage to the coil or diaphragm, which can result in failure of the loudspeaker.  This may necessitate 
a widening of the coil gap, which is significantly disadvantageous, as this will reduce the magnetic 
field strength in the coil gap.  

 

Figure D.5: Deflection in severe rocking mode may cause contact between coil and magnet assembly. 

D.4.2. Acoustic radiation 
A rocking mode can create acoustic radiation either by monopole or dipole radiation.  Monopole 
radiation is only possible when the shape of natural rocking mode is not completely symmetric.  This 
tends to occur when there is a large cos(α) asymmetry in the suspension stiffness distribution.  



  Rocking modes in single-suspension loudspeakers 203 
 

 

 

D.5. References 
Beranek, Leo L., Acoustics,  The Acoustical Society of America (1954). 

Ewins, D. J., Modal Testing: Theory and Practice Research Studies Press Ltd., Letchworth, 
Hertfordshire, England (1988). 

Hunt, Frederick V., Electroacoustics: The Analysis of Transduction, and Its Historical Background. 
Harvard University Press, Cambridge, Mass., USA. (1954) 

Larsson, Daniel, “Using Modal Analysis for Estimation of Anisotropic Material Constants.” Journal 
of Engineering Mechanics, 123 (3). (March 1997) 

McLachlan, N. W., Loud Speakers, Theory, Performance, Testing, and Design. pp. 69 – 72.  Oxford 
University Press, London, U. K. (1934). 

Olson, Harry F., Acoustical Engineering. D. Van Nostrand Company, Inc. (1957) 

Tse, Francis S.  et al. Mechanical Vibrations p. 156.  Prentice-Hall Inc., Englewood Cliffs, New Jersey 
(1978).

 
 
 
 


